
CONCURRENCY AND MULTITHREADING 1

Multi-Core Nested Depth-First Search
| Celal Karakoç / c.karakoc@student.vu.nl / 2616723

I. INTRODUCTION

The purpose of this report is describing several
implementations of algorithm 2: Multi-Core Nested-Depth
First Search (MCNDFS) [1] and the evaluation of the latter
implementations.

II. THE NAIVE MC-NDFS

A. Shared data

TABLE I: All datafields

Shared Local
red graph
count pink
visited colors (Cyan, Blue, White)
locks (red and count) id

Note: Objects using italic have been removed in the improved implementation.

Local Objects: A State from one Graph object can be
conveniently compared to a State from another, given that
both Graphs have been created from the same Promela file.
This means that in our case each worker can allocate its own
copy of the Graph without the need to share it.

Each state can be mark be marked either cyan, blue, white
which is done using the local colors object. Besides being
one of the latter colors a state can also be marked pink
which is stored in a separate local pink object. Finally, each
thread gets a unique (incremented) id, which does not need
to be shared either.

Shared Objects: Both red and count are MRMW (Multi-
Reader Multi-Writer) shared objects. For the backtracking in
dfs_red to start properly it is essential that incrementing and
decrementing counts from different threads at the same time
does not affect cause problems.

B. Data Structures

The data structures we used for our naive implementation
are HashMaps for the colors, pink, red, and count. The
advantage for the hash data-structures is their ability to
perform lookup and insertion operations in O(1) time. The
disadvantage comes into place with the values red and count.
Because they are shared we need to lock them to impose
synchronization. This will cripple performance. Later (section
III-A) on we will see how we improve upon this by changing
both these data structures into a ConcurrentHashMap. Lastly,
for the Promela Graph we used the provided of the library as
was required.

C. Visited States
There were two ways in which we kept track of the visited

states. Firstly, in all of our versions we tracked states by
means of color. Unvisited states are initially colored White,
which is perceived as a null value in our colors HashMap.
Each newly visited state is initially colored Cyan, and after
exploration, Blue. With this the MC-NDFS algorithm ensures
that all states are visited at least once.

On top of that, as the second way, our semi-improved
implementation kept track of the amount of times each
worker visited a state. It stored the values in a shared
(Concurrent)HashMap. Then each worker gets and removes
the least visited neighbour each iteration. This however
didn’t cause a significant improvement, as seen in table II.
However, given that most Graphs do not have a very large
number of branches per node, performance still exceeded
that our naive implementation. Although, later on, we found
a better version, we at least wanted to make a note of our
findings here and show our benchmark for comparison.

TABLE II: Choosing the Least visited state each iteration

File/#Threads 4 8 16
accept-cycle 71 76 82
bintree 8683 6692 6624
bintree-converge 7106 6250 5753
bintree-cycle 74 73 82
bintree-cycle-single 7663 6458 6077
bintree-loop 7485 7363 5622
simple-loop 72 80 80
tritree 596 507 661
tritree-cycle 76 72 78

• First newline
The reason for this, as shown in the sample code in figure 1,
is that to get the least visited state (i.e. minimum within the
neighbours) it would have a time complexity of n+(n− 1)+
(n− 2) + ...+ 1 ≈ O(n2).

List <State > st = graph.post(s);
int postSize = st.size();
for (int i = 0; i < postSize; i++) {

State t =
getAndRemoveLeastVisited(st);\\ O(n)

...
}

Fig. 1: Gets least visited and removes from list

Clic
k t

o BUY NOW!PD
F-XChange Editor

w
ww.pdf-xchange.com Clic

k t
o BUY NOW!PD

F-XChange Editor

w
ww.pdf-xchange.com

https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor

CONCURRENCY AND MULTITHREADING 2

D. Occurrence of synchronization

Fig. 2: Alg.2. A Multi-coreNdfs algorithm, coloring globally
red in the backtrack

The lines of code in figure 2 for which synchronization of
threads comes into play through the usage of the shared
data-structures are count, red and visited. For count there
needs to be a lock at line 10 and 21. Synchronization also
needs to take place on line 22 with a wait-notify scheme. For
the red, take note of lines 7, 18 and 23. Those lines should
also be locked for reads and writes respectively. Furthermore,
only within our permutation of least visited (the
semi-improved version), we atomically insert a visited after
the dfs_blue and dfs_red method calls respectively. The
visited counts are then read in the permutations of post in
lines 6 and 15. Within alg. 2 all lines are computed
atomically, which means that we need to use AtomicIntegers
for every in-/decrement especially in the
ConcurrentHashMap. Since these are not protected by locks.

E. Performance on potential graphs

(a) Continuous single branch (b) Continuous penta branch

Figure 3a and 3b represent two extreme case in which are
very well suited for sequential and multithreaded respectively.
In the graph in figure 3a, the overhead caused by starting and
stopping multiple threads will make the sequential outperform
the multithreaded all the time. However, in the case in figure
3b, with each node having a lot of neighbours, the bigger the
k the faster the multithreaded performs in comparison to the
sequential. This does include having a proper permutation of
the neighbours, though.

Fig. 4: bintree-cycle-single with accepting cycle Note: This
graph can be made by changing the ’single’ variable within
bintree-cycle-single.prom file.

Taking the graph in figure 4 into consideration, in which
we can show when our algorithm outperforms the sequential.
In this case, the sequential needs to go through the left side
first, then the right side. It checks all the leaves one by one.
However, our algorithm spreads itself out equally likely on
each state, which means that it will vastly outperform the
sequential with each thread added (given that you have
enough cores to run them), as can be seen in figure 5.

0 2 4 6 8 10 12 14 16

1,000

2,000

3,000

4,000

4,864
5,139

Number of Threads

Ti
m

e
(m

s)

bintree-cycle-single with accepting cycle

seq series
improved series

Fig. 5: bintree-cycle-single modified to contain an accepting
cycle

F. Termination of the program
The search of our program would be terminated in the

following cases:
1) A cycle has been found. The thread that has has found

the cycle will throw a CycleFoundException. The
process to close any threads that still perform

Clic
k t

o BUY NOW!PD
F-XChange Editor

w
ww.pdf-xchange.com Clic

k t
o BUY NOW!PD

F-XChange Editor

w
ww.pdf-xchange.com

https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor

CONCURRENCY AND MULTITHREADING 3

computation is started (more on this in the following
paragraph).

2) No cycles have been found. In this case all threads
would complete their computations and terminate with
false as output.

3) Through the means of unwanted exceptions, such as a
FileNotFoundException.

We use an ExecutorService in combination with a
CompletionService provided by Java’s standard library. Our
workers implement the Callable interface returning booleans.
After submitting our callables to the CompletionService the
latter service will be used to retrieve the result of the thread
as soon as they complete. If a thread has found a cycle
immediately shuts down the ExecutorService, interupting
all the threads, following by invoking awaitTermination()
to await thread termination, and finally returns. Inside of
thread thread we regularly check each dfs_red and
dfs_blue method call for a potential interrupt. If a interrupt
has been found detected, we throw an
InterruptedException, which gets caught, logged the
interrupted status gets restored before we return [2].

III. IMPROVEMENT TO THE NAIVE IMPLEMENTATION

A. ConcurrentHashMap
Our naive implementation as described in section II required

two hashmaps, one for red state and one for maintaining the
counts. To assure that two threads would not be able to write to
the same map simultaneously each hashmap was supplemented
with a read-write lock. However, this creates a problem: when
one of the thread is writing to the hashmap reading or writing
the map from another map is not possible; creating a potential
bottleneck.

We used a ConcurrentHashMap to not fully remove, but
certainly alleviate the latter bottleneck. A
ConcurrentHashMap still makes use of lock internally so
why is it better? A ConcurrentHashMap is essentially split
up into segments which can be individually locked. A read
operation reflects the latest successful update but does not
require a lock. The combination of the latter two reasons
allows for much greater throughput when there is a large
number of writes being performed (as is the case with the
counts hashmap). Lastly, its putIfAbsent method is executed
atomically. This is especially useful when initializing state
counts.

The overall performance gain of this improvement was quite
significant. Detailed performance results and evaluation can be
found in table VII.

B. Permutations using modulo offset
Due to the nature of the algorithm, it is highly beneficial

to performance if branches to visit are divided among threads
increasing the chances of finding an accepting cycle. Hence,
our idea was to create a permutation that would accommodate
such division.

The idea is simple, each thread has a preassigned id ranging
from 0 to n-1 workers. We iterate over the post states using

List <State > postStates = graph.post(s);
int postSize = postStates.size();
for (int i = 0; i < postSize; i++) {

// Worker ids range from 0 to (n-1)
State t = postStates.get((workerId +

i) \% postSize);
........

}

Fig. 6: Code sample using modulo offset

a for-loop that will use the worker’s id as an offset modulo
the number post states. This will ensure that each worker will
actually start to visit at an at a predefined offset but will still
visit all states eventually. A code sample can be seen in figure
6. Though this approach yields much better results than using
the output of graph.post without any further modifications, we
surprisingly found that approach actually yielded a sub-optimal
result when compared to a Collections.shuffle for most input
files.

So why did a simple randomization yield better results in
the real world? Suppose the program is initialized using 8
workers and is run on a CPU with the same number of threads.
Suppose the first node we inspect has two post-states (PS).
Our optimization will now assign the workers with ids 0 2
4 6 to PS-1 and the workers with ids to 1 3 5 7 to PS-2.
This fifty/fifty division seems optimal. However, note that the
large majority of the of the nodes in provided input files have
only 1 or 2 post-states. Due to the way in which permutation
was generated, we have divided all even number worker ids
into one branch and all odd worker ids into the other branch.
This will actually cause all workers to take the same branch
as long as the number of post-state < 3 (most of the time) in
subsequent nodes. The latter poses a significant problem for
scalability as increasing the number of threads will amplify
the effect and further reduces performance. The probability of
such an event when threads chose paths at random is much
lower. Which is reflected by the gain in performance as can
be seen in section IV-D and IV-E.

C. Randomization

As mentioned previously our final version uses
randomized permutation to determine which branch to take.
Each thread created a random permutation using
Collections.shuffle(graph.post(),
ThreadLocalRandom.current()). The use of
ThreadLocalRandom is important since using
Collections.shuffle() without it would cause the method to
use the default synchronized Random resulting in a massive
scalability bottleneck. When the number of threads increases
the effects on randomization become more clearly visible
(equal distribution over branches) especially for files with
relatively low average post count such as bin trees.

Clic
k t

o BUY NOW!PD
F-XChange Editor

w
ww.pdf-xchange.com Clic

k t
o BUY NOW!PD

F-XChange Editor

w
ww.pdf-xchange.com

https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor

CONCURRENCY AND MULTITHREADING 4

D. Wait/Notify Per Object

Before dfs_red can start backtracking, it first needs to
assure that the count (represented by an AtomicInteger) of
the state in question has reached zero. In our naive version,
we used spinning to constantly check the value of the
AtomicInteger causing significant overhead especially when
the thread count increases. In our improved version, we first
attempted to implement a wait-notify scheme using a
ReentrantLock and a shared Condition object. The
problem with this approach was that there was just one
condition object hence each thread would wake up when
signallAll() was called. However, only threads that wait
for state-x’ count to become 0 should wake up when this
event is sent. The solution was to use specific events by
using Java’s wait() and notifyAll() on the AtomicIntegers
corresponding to a State’s count; which are already shared
between workers. In doing so we are able to only wake up
threads that wait for a specific state count to become zero.
An added benefit of wait() and notifyAll() is that these
methods work with synchronized blocks instead of a global
lock (using a derived Condition). This allows us to
synchronize the specific count objects individually.

IV. RESULTS

A. Methods

The benchmark was created by running our program on the
DAS-4. Hence, all reported times reflect runtimes on one of
its compute nodes. Some notes on the benchmarking process:

• We measured the performance of all input files that were
provided to use and took the average of their runs.

• A maximum of sixteen threads was chosen for running
the program since this is the maximum number of
threads available to a DAS-4 compute node.

• To minimize unwanted OS caching we always ran the
sequential runs of the program on different input files.

B. Base benchmark

Table III shows the timings of the provided sequential
implementation. These result will be used as a guideline in
further sections.

TABLE III: Provided Sequential Version

File Sequential (ms)
accept-cycle 2
bintree 4551
bintree-converge 6063
bintree-cycle 2
bintree-cycle-single 6255
bintree-loop 5764
simple-loop 2
tritree 285
tritree-cycle 2

C. A note on thread termination overhead
Our implementation will upon finding an accepting cycle

try to close other threads. A part of this processes is invoking
awaitTermination() on the ExecutorService which will
induce a slight delay (milliseconds). Since some file only
containing an accepting cycle only take 2ms to compute
using sequential it looks like our version is much slower (e.g.
10ms). However, this is simply due to the fact that we have
included closing the threadpool in the benchmark result. The
individual threads do finish at speeds similar to sequential on
these files. We might be able to reduce the overhead slightly
if we were to remove the threadpool altogether and manage
it manually. However, we use the threadpool in combination
with a CompletionService which allows us to do very
simple and low overhead Future polling. At jobs that take
longer than 10ms that will be a benefit.

D. Benchmark permutation using modulo offset
In table IV the benchmark result can be seen for the

permutations based on a modulo worker id approach as
described in section III-B. The same section also explains
that the approach will not scale for most graphs when the
number of threads is increased. The latter is confirmed by
our benchmark result. While the modulo permutations still
do relatively well for lower threads counts, their performance
rapidly degrades for higher thread counts. This is the case
especially on binary tree structures where the phenomenon
discussed in section III-B is most prevalent.

TABLE IV: Permutation using modulo offset

naive (ms) improved (ms)
File / #Threads 4 8 16 4 8 16
accept-cycle 7 7 16 5 7 16
bintree 11550 13190 14246 8097 9531 18328
bintree-converge 11752 11845 11639 7369 11141 17852
bintree-cycle 9 10 15 7 8 14
bintree-cycle-single 15065 16947 16711 7955 9917 18809
bintree-loop 10801 13040 12524 7211 10733 20839
simple-loop 7 8 14 4 10 14
tritree 1129 811 1195 437 646 953
tritree-cycle 6 8 15 6 8 15

E. Benchmark permutation using ThreadLocalRandomShuffle

TABLE V: Permutation using ThreadLocalRandomShuffle

naive (ms) improved (ms)
File / #Threads 4 8 16 4 8 16
accept-cycle 7 7 16 6 10 17
bintree 11550 13190 14246 6308 5267 6277
bintree-converge 11752 11845 11639 6429 6490 4920
bintree-cycle 9 10 15 7 9 16
bintree-cycle-single 15065 16947 16711 5589 6642 6481
bintree-loop 10801 13040 12524 7535 6834 4482
simple-loop 7 8 14 6 13 16
tritree 1129 811 1195 406 340 374
tritree-cycle 6 8 15 7 9 14

Our final version uses randomly generated permutation.
This was also the case for our naive version. Table V shows

Clic
k t

o BUY NOW!PD
F-XChange Editor

w
ww.pdf-xchange.com Clic

k t
o BUY NOW!PD

F-XChange Editor

w
ww.pdf-xchange.com

https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor

CONCURRENCY AND MULTITHREADING 5

the result of generating permutation in this manner. For
reasons discussed in section III-B and III-C the randomized
version performs especially well for binary tree inputs. When
the number of threads increases to 16 it far outperforms its
modulo counterpart (Table IV) which hardly scales at this
thread count. It also clearly outperforms sequential here in
bintree-loop and bintree-converge for the aforementioned
reasons.

TABLE VI: Non randomized permutations

improved (no shuffle)
File/#Threads 4 8 16
accept-cycle 7 8 12
bintree 15732 20470 47600
bintree-converge 13017 25500 45539
bintree-cycle 8 12 14
bintree-cycle-single 16139 19201 41164
bintree-loop 16785 24241 56001
simple-loop 7 11 15
tritree 1249 1710 1793
tritree-cycle 5 8 11

We do wish to note that simply using graph.post() is not
the same as randomizing the permutation (as was suggested
in the feedback of our naive version). Using graph.post()
without first shuffling will make the result cause each thread
to take the same path since these paths are generated
deterministically. Since we already used randomization in our
naive version but still wished to demonstrate its effectiveness
we have performed an additional benchmark using an
unprocessed graph.post() permutation in our final version
(thus generating the permutation using for(State s :
graph.post()) while keeping the rest of our final
implementation unchanged). Table VI shows the result of this
benchmark. We think the effectiveness of randomization
should be especially clear here. For most inputs a significant
speedup is achieved. Speedups of 10x are not uncommon
once the number of threads are increased to 16.

F. Performance gain final version

TABLE VII: Increase performance in % (4/8/16 threads)

naive → improved
4 8 16 avg

accept-cycle 16,7 -30 -5,9 -6,4
bintree 83,1 150,4 127 120,2
bintree-converge 82,8 82,5 136,6 100,6
bintree-cycle 28,6 11,1 -6,3 11,1
bintree-cycle-single 169,5 155,1 157,8 160,8
bintree-loop 43,3 90,8 179,4 104,5
simple-loop 16,7 -38,5 -12,5 -11,4
tritree 178,1 138,5 219,5 178,7
tritree-cycle -14,3 -11,1 7,1 -6,1

As seen by table VII there is a significant increase in
performance of our naive compared with the improved
version. The usage of ConcurrentHashMaps has been an
important factor for this. Since this allowed us to remove the
global locks from the naive version improving scalability.

Note once more that we had already incorporated random
permutations into our naive version and thus performance gains
due to improved permutations were not captured by Table VII.
However, these gains are substantial as can bee seen when
comparing the results from tables V and VI.

We noticed that with an increase in threads the
performance does not always scale. It is also the case that
each thread has to be active and can’t be waiting in the
background. If we use more threads than the machine can
handle it creates an overhead for creating/deleting the threads
without any considerable increase in performance.

It is noticeable, however, that the more branches each state
has our shuffle will perform better than other permutations.
This is because it will traverse the graph more
equally/’random’ over time. This will also create a faster
runtime than other permutations (i.e. modulo offset) over
time.

With accept-cycle, bintree-cycle, tritree-cycle the
performance degrades the more threads we use. All these
contain accepting cycles. The probable reason for this is the
overhead that the closing of the threads cause. This is also
the case for simple_loop, most probably because it is a very
small graph, thus the amount of time it takes closing threads
will be taken into consideration.

V. CONCLUSION

In this report, we introduced our Multi-Core NDFS
implementation in Java. We looked at several methods of
generating permutations. From those, the shuffle with the
ThreadLocalRandom performed the best in our benchmark.
The shuffle also scales better into larger graphs than the
modulo offset and is overall better than the least visited
approach. Finally, we concluded that using a
ConcurrentHashMap strongly increases the performance.

REFERENCES

[1] A. Laarman, R. Langerak, J. van de Pol, M. Weber, and A. Wijs, Multi-
Core Nested Depth-First Search, ser. Lecture Notes in Computer Science.
Springer Verlag, 7 2011, pp. 321–335.

[2] B. Goetz. Java theory and practice: Dealing with interruptedexception,
year = 2006, url = https://www.ibm.com/developerworks/java/library/j-
jtp05236/index.html.

Clic
k t

o BUY NOW!PD
F-XChange Editor

w
ww.pdf-xchange.com Clic

k t
o BUY NOW!PD

F-XChange Editor

w
ww.pdf-xchange.com

https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor

