-C DATAMINING

Million

Netflix Challenge

Celal Karakog / || N / 4342933 / KaggleID: Celal Karakoc / KaggleScore: 0.84147

STRICT 4 PAGE COUNT

I. INTRODUCTION

Within this report we will try to give our solution to the
movie recommendation problem. That is, given a set of users
and movies, we will seek to predict the rating that a user would
give to a movie.

The relevancy for such a solution stems from the fact that
there is too much data for a single user to go through to find
what he or she likes. This can be applied from movies to
products to connections with people. A recommender system
in such cases brings convenience to the searching process and
creates more potential customers. As such, these recommender
systems are used by a vast amount of companies, like Net-
flix (movies), LinkedIn (Professional Network) and Amazon
(products) to name a few. There is also a huge financial benefit
to it, to quote Netflix executives Carlos A. Gomez-Uribe and
Neil Hunt

“We think the combined effect of personalization
and recommendations save us more than $1B per
year.“??
methods: Collaborative Filtering Latent Factors
For my final predictor I only use the ratings. The age,
profession and gender didn’t have any effect on the outcome.
29
Read up on several previous methods of your choice and
discuss their approaches, including why they were successful.
Connect these approaches to your own idea and motivate why
you built your final predictor the way you did. For instance:
it was shown that some user characteristics, such as gender,
contain useful information as the performance of a user-user
collaborative filtering model improved when it was added.
Therefore, we decided to include such characteristics in our
latent factor model as well. Make sure to specify how your
approach differs from these existing approaches and do not
forget to cite them in your references.
Finally, spend one or two lines describing how you struc-
tured your report (e.g. in section 2.2 we describe our deviation
on a standard latent factor model).

II. METHODS
A. Data

Within my Collaborative Filtering we ended up using only
the ratings. As seen in ?? the addition of the age, profession
and gender didn’t improve upon the original approach. We
did not gather additional data to train our recommender due
to time constraints.

B. Speedup gains

Throughout the project we also made several code changes
to improve upon the speed of execution. This made our
execution go from 2 hours to a mere 20-25 seconds. The
first step that we took for achieving this result would be
precalculating the similarities into a double array. The results
of these similarities were serialized and saved into a .dat
file. Furthermore, we also make use of parallel execution
through streams. By both multithreading and precalculating
our time was cut considerably. At last we had a improvement
in our datastructures. To understand this speedup we need to
look further into the code. Because we decided to choose for
the top-N neighbourhood approach there was a bottleneck of
getting the top-N neighbours within the list. In pseudocode:

For i to n in predictions: List similarities; // we get the
list of similarities in O(n), because of the precalculation List
topN; // Here we need to get the top-N Neighbours // further
calculations...

The loop through the predictions will in a real world
scenario be through millions of predictions. This would mean
that getting the top N neighbours in O(n?) time (by checking
them n times for the greatest similarity) will scale really badly.
A better approach would be to either sort the list and get the
items 1 through N. Or we could also save our similarities in
a PriorityQueue instead of a List. Both these methods would
ensure a better performance, O(nlogn). This is still not ideal.
Ideally, we would like to have a O(n) way of doing this.
Hereby, our final improvement: the introselect algorithm. This
algorithm combines both quickselect and the median of means.
Basically, what happens is that we find the N’th largest value
within the list in Linear time. And then when we have that
value, we go through the entire list and grab all values greater
than the N’th largest value. This ensures that our execution
time will be shortened drastically and has resulted in the
greatest speedup of our recommender.

C. Measuring error

The Error we used to compare/measure our results is the
Root Mean Square Error.

1
RMSE = | > (i —7a)? (1)
‘ |(i,x€R)

Other evaluations we could use was the Mean Absolute Error:

I)
MAE =~ |y = il)
j=1
I did not use this metric, but the difference lies mainly in that
RMSE gives a relatively high weight to large errors, while
MAE is steady in that regard.

https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor

-C DATAMINING

Collaborative Filtering

1) User-User vs. Item-Item:

2) The Naive Approach:

3) Local and Global Effects: Each user has a certain bias in
rating things. Some are more generous with their ratings than
others. We will try to solve this by having a certain bias added
on top of our estimation. This means that for each rating for a
movie y by a user x, we will need to add a baseline estimate
by on our final estimation:

Within this we have the mean of all movie ratings (), the
(average rating of x) - 1 (b;) and the (average rating of y) -
i (by).

4) Computing Similarities: To compute the similarity be-
tween item ¢ and item j, we tested ?? similarity measures. In
the end, we noticed that the best results were gained by the
Pearson Similarity. The Pearson correlation coefficient (PCC)
is calculated by the formula:

. ZkemJ(Tki — i) (T — py)

V2w (rui =)2 32, (ruj — 1)?

5) Neighbourhood Selection: There were two ways we
could decide the neighbourhood selection.

1) Top-N filtering: A list of N nearest-neighbors is selected

according to the similarity.

2) Threshold filtering: A list of all the neighbors is se-
lected that has a similarity that is larger than a particular
threshold.

The most critical aspects of both of these are selecting either
the threshold value for 2 or the value of N for 1. Since I
decided to go with the first I found out that a neighborhood
with N=17 is the best. This N has come out of trial and error
with several N-values, once, ranging from 100-15.

6) Final rating: With all this in mind, and all of the above,
the formula we acquire for our final CF algorithm is:

ZjEN(i;J;) Sij
Where N is the set of top N neighbours, s;; is the PCC of item

¢ and j and the b;; and b,; are the local and global baselines
respectively.

s(i, J))

Ty = bzi +

®)

E. Latent factors
.. TODO

III. RESULTS

.. TODO

Describe how your algorithm performs; do not just give a
single number but tell us what the effect is of adding certain
components (e.g. how much it improved by adding temporal
biases). What was its cross-validation performance and how
much did that differ from its Kaggle leaderboard performance?

This section should include a table or a figure describing
your results. Remember that those need to have legends and
descriptions on the x- and y-axis. It should be so clear that
anyone, including non-computer science students, can interpret
it correctly.

This section should be roughly 1.5 page long.

IV. DISCUSSION

.. TODO

Summarize the results of your efforts; do not simply repeat
but tell us what worked and what did not. Use your summary
as a reasoning to explain what would be a good step to take
in the future. For instance: We noticed that item-item works
better than user-user collaborative filtering and after inspection
of the cosine distances, we saw that the movies are more
similar to each other than the users. Therefore, we believe
that an interesting future direction would be to include more
movies in the database to increase the chance of finding very
similar movies to the one that needs to be predicted.

Reflect on how you approached the project, what you liked
and did not like, and what you could have done to be more
efficient. In particular, highlight what you have learned through
your efforts.

This section should be roughly 0.5 page long.

V. REFERENCES

APA STYLE - Barrass, Robert. Scientists Must Write: A
guide to better writing for scientists, engineers and students.
Psychology Press, 2002.

- Burchfield, Robert William, ed. The new Fowler’s modern
English usage. Oxford: Clarendon Press, 1996.

- Dawson, Christian W. The essence of computing projects:
a student’s guide. Prentice Hall, 2000.

https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor

-C DATAMINING

VI. INTRODUCTION

dioajefisjoefijseof

VII. METHODS
A. Data

dioajefisjoefijseof

B. Benchmarking

dioajefisjoefijseof

RMSE =

(6)

C. Implementation
D. Collaborative Filtering using Near-Neighbor Search

hbdioajwdi

1) Baseline: Each rating for movie m by user w consists
of a baseline b,,, estimate and a similarity measure. The
baseline estimate has three components which include the
average movie rating p. A user bias b, that shows how the
users average rating compares to the global average and is
defined as the weighted average of the users ratings minus the
global average. A movie bias b,,(g) that shows how a movies
average rating compares to the global average corrected for
gender g. It is computed as the difference between the average
rating given to the movie by either males or female minus the
global average. This latter results in the following baseline
estimate:

2) Computing similarities: To compute the similarity be-
tween two items (7,j), a regularized version of the cosine
similarity s;; was used as a metric. It provides a measure
between [0,1] where a higher similarity indicates two movies
are more similar and can easily be cached after computation.
For movies, the actual value is computed by taking the inner
product of the intersection of their ratings and subsequently
dividing this by their respective L2-norm. The ratings of both
movies where reduces by their average prior to computation
providing a form of regularization. The latter reduces to the
following formula:

s(3, 5) = > werns (Thi = i) (kg — 1y) ®)
V2 (rui = 1)2 32, (ruj — 145)?

3) Computing the final rating: The combination of both
formulas results in the final NN model were the rating r,¢ of
movie ¢ by user x is defined by a baseline for r,¢ added to
the weighted average of the similarity measure and baseline
deviation from the neighborhood N of i. Which in effects
models both local and global effect [?] and can be reduced to
the following formula:

ZjEN(i;z) Sij (TI] - bmg)

. . ZjEN(i;x) Sij

9

https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor

-C DATAMINING

Latent Factors

The latent factor (LF) model used is primarily based upon
the work of the Netflix prize winners [?]. The model makes
use of matrix decomposition to express the ratings as the
inner product of two matrices P and @) which dimensions
are partially defined by the number of factors f. Each user is
presented by a vector p, € R/ and each movie by a vector
¢; € R, The ratings of user = for movie i can be expressed
as the inner product between them: r,; = p;qi. The latter
approach is very suitable to model interactions but makes it
more difficult to model the behavior of individual users. To
remedy this, a baseline estimate is added which contains the
global average, user-bias, and movie-bias. This reduces to the
following formula:

rzyzu—kbx—i-by—i—p/q (10)

To train my model I have chosen to use stochastic gradient
descent (SGD). If we were to simply start training the model
without additional improvements we would experience severe
overfitting. Therefore, a regularization term consisting of L2-
norms is added where \; controls the effect of the regulariza-
tion term. The objective of the training process now becomes
the minimization of the resulting objective function defined
as:

mingy 3 (rei — (11 + by + b; + p) (1D

z,y

+ Agllall? + Aplpl? + AbZ + Xib2 (12)

Using SGD, for individual rating, each parameter (note
that this includes the user and movie biases) is updated
using the gradient of the error that can be derived by taking
the derivative of the objective function for the respective
parameter. This results in the following update rules where
o represent the learning rate:

by = by + alerr — Azby) (13)
bi = b; + alerr — A\;b;) (14)
Px =Pz + a(err * Qi —)\ppz) (15)

Aqz) (16)

1) Choosing the learning rate: It turns out that fine tuning
the learning rate is quite difficult. I wanted to make the
learning rate « adaptive to improve both convergence speed
and accuracy. My initial idea was to take a constant and scale
it by the inverse square root of the current iteration ¢ such that
o = Qg * % This turned out be less effective than a simple
fixed learning. I then researched several methods including but
not limited to: AdaGrad, AdaDelta, RMSprop and eventually
found an interesting method to automatically adjust multiple
learning rates so as to minimize the expected error at any one
time [?] which I decided to implement. Unfortunately, my pro-
gramming skills and mathematical foundation was not strong
enough to achieve a working implementation. Eventually I,
chose a learning rate of 0.005 which was reduced to 0.001
upon reaching a RMSE of 0.845 on the validation set.

¢ = qi +alerr xpy —

2) Adding temporal biases: Researched showed that V""‘ﬁw‘ym\m@‘

addition of temporal biases is quite effective [?]. Unfortunately
to use the method described a rating date was required which
was not present in the provided dataset. However, I did add
a temporal bias using the movies release year which was
available. To incorporate the latter into my model I first
normalized all release years y,, to a [0,1] range such that
y; = (ysminy)/(maz, — min,). A new bias vector T
consisting of v Buckets was added. For each movies release
year, the corresponding bias was selected using T'[y} * v].
The value of the biases for bucket ¢t was updated using SGD
identical to the user and movie biases t; = t; + a(err — At;).
The resulting model after adding the temporal biases is defined
as:

Tai = i+ by + b + T(yiv) +p q (17)

3) Adding IMDB: Lastly, I incorporated the IMDb / RT data
from section VII-A into my LF model in a manner similar to
a bias. Resulting in the final model:

The b;pmap and b, are both defined as the rating that movie
has received minus the average on each site respectively. Note,
that both biases are not training using SGD.

4) IMDb and Rotten Tomatoes: Two additional basic pre-
dictors were created using the data retrieved from IMDb
and Rotten Tomatoes as discussed was section VII-A. The
predictors estimate the r;,, as the rating average rating of for
movie m on each site respectively. Individually these ratings
are not of much value. However, they do add value when
combined with other models using ensemble methods.

5) Ensemble strategy: To an ensemble improve accuracy,
I combined the prediction of all previously discussed models.
The latent factor model was used multiple times with a
different number of factors. The combiner that was used
predicted the final rating as the inner product of the set
of predictors P and weights W were w; determines the
weight gf predictor p;. Resulting in the following estimate:
rei = P W =piwy + ... + ppwy,.

Due to an increasing number of predictors choosing
weight soon became tedious. Therefore an evolutionary
strategy (ES) [?] was used to train the combiner. It works by
randomly mutating the weights using a Gaussian distribution,
computing the fitness of the new population and replacing it
with the old population if the fitness has improved. Fitness
is defined as 1/RMSE such that higher is better. Each run
converged to approximately the same fitness however they
might do so using a very different combination of weights. I
used these as a guideline to tweak my final weights. Though
ES isnt perfect it does provide useful insights e.g. suggesting
a combination where some weights are negative which is not
something one might think of right away.

The second combiner I used was based on votes corrected for
confidence. My idea was that if a prediction would output a
rating r; of e.g. 3.56 it was not very confident. The predictor’s
vote v; was defined as the rounded rating. The confidence

S

https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor

-C DATAMINING

predictor i was then defined as ¢; = (0.5 — |v;74])?
such that a rating close to their respective vote would

TABLE III
RMSE OF LF MODEL ON A LOCAL VALIDATION SET

receive a large confidence. The vote which accumulated Method / Factors 50 250 750 2000
the most confidence became the final prediction. However, Basic 0.9421 [0.9974 [0.9491 | 0.9713
unfortunately the combiner did not perform better than the Regularization 0.8821 | 0.8968 | 0.8927 | 0.8910
ES trained bi User / Movie Bias 0.8323 | 0.8394 | 0.8393 | 0.8389
ramned comoIner. S . User / Movie / Temporal Bias 0.8402 | 0.8389 | 0.8388 | 0.8392

6) Cross Validation: Cross-validation is essential when User / Movie / Temporal / IMDB / RT | 0.8392 | 0.8358 | 0.8356 | 0.8352

evaluating the performance of the model. If we were to report
the RMSE of the training set it might be that our model
performs very well on paper but does not actually generalize
when used with different data. To gain reasonably accurate
estimate I used a train-test split. Each run a fraction of the
data e.g. 0.9 was selected for training while the remaining data
was used for testing. Before each run, the data was shuffled
such that a different permutation was used each time.

VIII. RESULTS

A. Basic Predictors

TABLE I
RMSE OF BASIC PREDICTORS

RMSE
1.1049
1.2568
0.9432

Predictor

IMDB

Rotten Tomatoes
Movie Mean

The predictors in table I show the results of the data that
was retrieved from IMDB, Rotten Tomatoes and Movie Mean
predictor with is just the average of all the ratings a movie
has received. These predictors are as discussed earlier used in
the LF model and in ensemble learning.

B. Collaborative Filtering using Near-Neighbor Search

TABLE 11
RMSE oF CF-NN MODEL ON KAGGLE
Method / Neighborhood 10 25 50
User-User no biases 0.98866 | 0.94705 | 0.94966
No biases 0.89882 | 0.88304 | 0.89821
Movie, user biases 0.84341 | 0.84136 | 0.85475
Movie, user gender biases | 0.84487 | 0.84090 | 0.84712

Table II shows the RMSE of my NN CF model on Kaggle.
I choose to show the Kaggle results since they are most
consistent and show the best performance. Increasing the size
of the local validation test increases consistency but also
significantly reduces performance due to a reduction in data
available for training. Hence, I chose to show only Kaggle
RMSE to optimize both. A grid search was used to test
all neighborhood size between [1,50]. The result was rather
anticlimactic since the sense that the default N=25 or N=26
achieved the best results. My first implementation used user-
user collaborative filtering with no additional biases or other
improvements and achieved an RSME of roughly 0.94. The
relatively poor performance caused me to explore item-item
collaborative filtering with no additional biases which per-
formed much better reducing the RMSE with approximately
0.5 to 0.89821 on Kaggle. Due to the gain in performance,

I abandoned user-user CF and focus fully on item-item CF.
After adding user and movie biases as discussed in [section]
the RMSE was further reduced to 0.84136 (N=25). Finally
adding gender biases slightly improved performance result is
final RMSE of 0.84090 for NV = 25.

C. Latent Factors

Table III shows the RMSE of my LF model on a local
validation set (note that all models expect the basic version
include regularization though not explicitly in [table] due to
space limitations). For each result, iteration was terminated
once the RMSE on the tests test no longer decreased for five
consecutive iterations or iteration 250 was reached. Without
biases and further optimization, the model very quickly
converges on the training data and performs poorly. By
adding regularization as described in section VII-E overfitting
on the training is and training yields more consistent results.
After adding biases (regularized) biases as per [equation] a
significant gain in performance of approximately 0.04 over
all factors.

The training data movie release years span approximately
80 years. After a grid-search, I decided upon a 36-bucket
temporal bias vector which gives in a bucket size of
approximately 80/36 = 2.2 years. Adding the bias showed a
slight gain in performance in the all LF model expect for the
LF-50 model which experience a RMSE increase of nearly
0.01.

The full LF model which includes IMDb and RT data
in according with equation 11 yields the best performance.
There seems to be little variance between two 250-750-
2000 factor variants. Each of them achieving an RMSE of
approximately 0.8360.

Increasing the number of factors has a positive effect
on each model except for the unregularized basic LF model.
Though not included in table 2, I have tested the model using
4000 factors which was as high as my computers RAM would
allow. The latter did not yield a significant improvement
(0.00004) over the 2000 factor model.

D. Ensemble

The combiner that yielded the most optimal result is
essentially a weighted sum of predictors optimized by an
evolutionary strategy and some final manual tweaking as
describe in section VII-ES5. The ES trained combined was
very useful in finding creative combinations of weights which

https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor

-C DATAMINING

TABLE IV
RMSE OF DIFFERENT SETS OF PREDICTOR COMBINATIONS

Model RMSE
NN-25 / LF-50 0.83250
NN-25 / LF-50-250 0.83044
NN-25 / LF-50-250-750 0.82835
NN-25 / LF-50-250-350-750 0.83007
NN-25 / LF-50-250-350-750-2000 | 0.83372
NN-25 / LF-50-250-750-2000 0.82796

could sometimes be manually be improved. To choose the
right set of models several selections were tested. Table IV
shows the performance of several ensembles a local validation
set (note that the performance is computed using the weighted
average of S5 runs per configurations). Where LF-[f] stands
for a LF model with f factors and NN-[n] stands for a NN
model with a neighborhood size of n. Which is also the
combination that yielded my best Kaggle score (0.82714)

The second combiner mentioned in section VII-E5 did
not perform very well. The best score being 0.83982 when
used with just a NN-25 and LF-2000. When more predictors
were added its performance quickly decreased. I suspect that
this was due to similar nature of the predictors.

IX. DISCUSSION

In this section I will discuss a number of things I learned,
did wrong, failed at and plan to improve.

The results showed that user-user CF performed poorly
compared to item-item CF. However, I believe that a large
component of the performance is related to the fact that the
model has only been trained on a fraction of the original
Netflix data. Given the current amount of data, there are
many users for which there are few or even no users that are
similar which leads to bad performance. If the size of the
dataset would increase user-user CF might be more useful
and perhaps contribute positively to ensemble learning.

The temporal biases I have implemented are not very
useful compared to the work of [?]. In the future, I would
like to supplement the rating data with timestamp such that
temporal biases can be utilized properly.

LF models are powerful but tweaking them in such a
way as to avoid overfitting turned out to be quite difficult.
Therefore I wish to further explore methods to make learning
rates adaptive which I believe will be useful in many project
to come.

I suspect that k-fold cross-validation might have improved
the results of my latent factor model. Though k-fold cannot
be seen as complex on its own I organized my code in such a
way that the Main class which loaded all the data did so with
a help of a number of static attributes and did not encapsulate
the process very well. Rewriting the application in such a
manner that it could easily run on the different result while
maintaining intermediate result was not possible due to time

constraint.

I found ensemble learning the biggest surprise during
the project. I did not expect that simply taking the weighted
sum of two predictors would yield such significant gains
in performance. In the future, I would like research more
complex ensemble techniques which I believe can significantly
improve performance.

I do feel that the ensemble section is rather short, certainly
given the time I spent on ensemble methods. Even though
I attempted a fair number of methods not described in this
report (strict page count) I was unsuccessful (or not as
successful as the ES combiner) at implementing them. Most
introductory literature deals with binary classification and
has predictors with well-defined confidence. For any future
projects, I wish to do more into methods such as Adaboost.

Overall I enjoyed, the project even though it was frustrating
sometimes. Since I really wanted to reach and RMSE below
0.82, which unfortunately I did not achieve. I think I might
have spent too much time on it which will probably increase
my RMSE on the finals. Lastly, next time I will definitely
read more papers before starting to code.

I found writing this report useful, generally tend to be
every bad at writing and it always cost me a lot of time. I
did find the strict page count of four 4 bit annoying. As you
can see I have filled up all space available and cheated a
bit with the multicolumn layout. However, to make it fit on
four page I still had to remove my graphs and a number of
sections and replace them with more compact tables to make
sure everything fits on four pages.

https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor

