
SECRET LIFE OF SOFTWARE CODE

Celal Karakoç
Department of Computer Science

Technical University of Delft
Student number: 4342933

c.karakoc@student.tudelft.nl

ABSTRACT

Pull-based development is a widely adopted distributed development model for contributing to open
source software (OSS) projects. In the pull-based development model, a variety of factors have an
influence on the decision making of the pull-requests. This literature review looks at and summarises
all the factors, of around 80 papers, that have a correlation with the acceptance rate. We have set up a
table containing a summary of all factors, how they were obtained within their respective papers and
we note down the outcomes per study. The results mainly provide insight on the correlation of the
factor with the acceptance rate, summarised from one or more papers, into a single paragraph. The
conclusion that we reached on the outcome on a per-factor basis can be seen in appendix A.

1 Introduction

Pull-based development is a distributed development model for developing large-and-small-scale software projects. The
development model works with the usage of forking one single central repository and after forking the repository, the
contributors then contribute code, be it a new feature, bug fix or a small patch, to their forked repository and create pull
requests to merge their work in the main repository[1]. A pull request is a platform to discuss the work and request
changes if necessary or even deny the contribution all together. This model allows for a distributed workflow, which
in turn makes sure there can be a multitude of contributors working on the feature at the same time. There are some
websites that allow you to work in this model, such as Github, Gitlab and Bitbucket. Furthermore, several third-party
applications (applications not part of the primary service), e.g. hooks, can be added on the aforementioned services,
to which more data and thus more stability and reliability can be added towards the process. These hooks are mainly
continuous integration services, whom are automated systems that check whether code-guidelines are followed, tests all
passed and sufficient tests are written. The integrator can use these hooks easily and as a time-savior to immediately
check for sufficient testing and code-style errors, or as a quick barrier for obviously bad code.

There exist other models for software development. One adopted by some popular OSS projects over the years is
the mailing list[2]. This model has its development through a series of email threads, where people can discuss
implementation and possible new features. Another model is the shared repository. This model has the core developers
sharing the read and write permission of the repository with contributors, making it so contributors can clone the
repository to their local machine and push changes and even create branches in the central repository.[1] Both the
pull-based development model and the shared repository model are examples of Distributed Version Control Systems,
which allows distributed development among the branches.

Clic
k t

o BUY NOW!PD
F-XChange Editor

w
ww.pdf-xchange.com Clic

k t
o BUY NOW!PD

F-XChange Editor

w
ww.pdf-xchange.com

https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor


PAGE 2 - AUGUST 28, 2024

The pull-based development model and in extension all the other DVCS have not been around for too long. The
development process had to evolve from one point. In earlier development strategies, centralized version control
systems were in place. In 2009, the most commonly used version control system was this centralized version control.
This caused the project to have only one single canonical source repository where developers would work against
through a checkout taken from the repository [3]. This however had the disadvantage that the code was not owned by
contributors, but rather small patches had to be submitted through only one repository. With the upcoming of DCVS,
every contribution became its own project in the forked repository, causing the contributors to not need to write access to
the main repository, allowing better development flow in the process. Even before 2009 there have been multiple other
iterations of version control systems in place. In fact the first system that used version control to work collaboratively
was made by Dick Grune in 1985. This system had a Client/Server model, which allowed the version history of the
project to be stored in a central server whilst the developers worked on a copy of the files on their own machines [4].

Pull-based development has the distinct advantage that the code has the protection of the core developers, where
the contributors only change their own forked repository and make pull requests from that forked repository. This
protects the main repository from bad code, since every change has to be reviewed by a core developer first. Pull-based
development also enables contributors and integrators to easily peer-review the code when a pull request is made.
This code review, makes it such that questions can be asked and feedback can be given before any merge to the main
repository occurs. Said question and feedback generally occur on the comments of the pull request and help solve
misunderstandings.

Furthermore, unlike the mailing lists, the pull-based development model doesn’t require one to send their patches
through mailing lists. With this, the model also appears to generate more awareness for the issues at hand. The
pull-based model appears to be more robust and a general step forward.

Lastly, pull-based development can also attract more contributions from casual contributors[1]. Since the effort required
to fork the repository is very low, it forms a low barrier for people to start contributing to a repository.

Within this literature review, we will mainly look at the factors that contributed towards the pull-based development
model. For each factor, we will report how the factor is measured, the outcome regarding the decision making and how
the study is conducted. The full results can be seen in appendix A. With this paper, we will try to answer the following
research questions:

[RQmain] What factors influence pull request decision making?

This question will be split up into four sub-questions, mainly:

[RQsub1] What factors related to the developer influence pull request decision making?

[RQsub2] What factors related to the project influence pull request decision making?

[RQsub3] What factors related to the process influence pull request decision making?

[RQsub4] What factors related to the code influence pull request decision making?

2 Aims

This literature review assesses the influence of factors on the acceptance or rejection of the code contribution, within the
pull-based development model. We broadly categorize all factors within 4 main groups: developer, project, process and
code. Our aim is, by looking at the influence on the pull-based model regarding factors of the developer (i.e. gender,
country, track-record), the factors within a project (i.e. popularity of the project, programming language), the factors
surrounding the process (i.e. comments, length of discussion, age of a pull-request) and the factors regarding code (i.e.
code style, comments, amount of blank lines), we can derive an answer for our research question or a set of indications
of the future of pull-based development and the direction it is moving to.

3 Methodology

3.1 Search Terms

As a starting point, we used as initial search-terms: pull-based development, pull-request, GitHub and open source.
These were our main terms, and we combined them with zero or more of the following sub-terms: model, software,
accepted, rejected, review, merged, through google scholar’s boolean search queries. The more papers we read, the
more specific the search terms became based on the titles and content of the papers. With snowballing through the
papers we searched the specific titles of the papers.

Clic
k t

o BUY NOW!PD
F-XChange Editor

w
ww.pdf-xchange.com Clic

k t
o BUY NOW!PD

F-XChange Editor

w
ww.pdf-xchange.com

https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor


PAGE 3 - AUGUST 28, 2024

3.2 Time frame

The division of the search was also based on a division of a time-frame. We only selected articles within the last 10
years, namely 2009-2019.

3.3 Sites

The base search engine we used was scholar.google.com. With that, we found and got our resources and papers from
mainly these sites: researchgate.net, ieeexplore.ieee.org, arxiv.org, dl.acm.org, scholar.google.com.

4 Factor Selection

The factors selection was based on the separation of the pre-and-post pull-based development cycle. With this, we
mean the area of factors before a pull request, during a pull request and after a pull request. The factors are primarily
looked at in the outcome of acceptance rate or rejection rate. Furthermore, the division is split into the following four
categories: developer, project, code, process.

4.1 Developer characteristics

Developer characteristics look at the different influences developers have on the pull-based development model. We
found the distinction between integrators and contributors and separate, wherever necessary, the factors based on
these two categories. We use the term developer as a umbrella term, including integrators and contributors. We also
group together similar characteristics from several papers (i.e. country of the developer and geographical location of
the developer), wherever it makes sense or the meaning is retained. Firstly, we quantify the innate factors about the
developers and their environments, like gender type of developer and geographical location. Furthermore, we quantify
the factors surrounding the skill of the developer, like track-record, experience and expertise. Lastly, we look at social
factors regarding the developer. Social factors include the relation between contributors (propensity to trust), prior
interaction, affiliation, activeness and level of participation. All factors regarding developers can be seen in appendix A
table 1.

4.2 Project characteristics

Project based characteristics are all the project related factors. Note that the popularity of the project is measured
differently in every paper, some papers measure the rating of the project, some measured the followers of a project. We
mapped all these factors in the table as popularity of the project. Firstly quantify the factors that are software related in
the project (i.e. programming language), then we quantify at non-software related factors (i.e. age and popularity). All
factors regarding project can be seen in appendix A table 2.

4.3 Process characteristics

Process based characteristics look at the factors that are related to the process a pull request or patch goes through
during pull-based development. The process looks at the pull request characteristics itself (like the number of comments
on a pull request and the age), while later looking at the substance of the development process (i.e. use of automated
systems and conformation to the project standards). All factors regarding process can be seen in appendix A table 3.

4.4 Code characteristics

Code based characteristics look at the factors that are related to the source code of the pull-requests. It looks at what is
actually inside of the pull-request, at what the developers want to merge. The code related factors include among other
things code style, size of commit and comments. Some factors were extracted from multiple papers, while others only
have one paper related to them. We have mapped all the factors in a table, this can be seen in appendix A table 4.

Clic
k t

o BUY NOW!PD
F-XChange Editor

w
ww.pdf-xchange.com Clic

k t
o BUY NOW!PD

F-XChange Editor

w
ww.pdf-xchange.com

https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor


PAGE 4 - AUGUST 28, 2024

5 Developer

In total, 34 papers were used to indicate the factors related to the developer. In figure 1 a distribution can be seen of
how the studies were conducted in these papers. Do note, however, that some papers used several means of conducting
the studies. In regards to the developers, datamining of large-scale projects (either through GHTorrent (20.7%) [5] or
other means (53.4%)) is how most of the data is collected (74.1%). After that, singular or small-scale projects make
for a sizeable amount of the collected data (18.5%). Small-scale projects whose patches were datamined and looked
through include the Linux Kernel [6] and Mozilla project [7]. Finally, two large-scale surveys (7.4%) [8, 9], with 750
and 2500+ developers respectively, were used to attribute outcomes for the factors.

Figure 1: How the studies were conducted in the papers
regarding developers.

Figure 2: How the outcomes were reached in the studies of
the papers regarding the developers.

The outcomes of our literature review, as seen in A.1, indicate that most of the factors have a positive correlation with
acceptance rate, see figure 2. A total of 82.6% of the papers shows that the acceptance rate increases in correlation to
the factor, while 17.4% of the papers show an increase in the rejection rate.

Figure 3: Pull requests vs. experience [10]

In total, we have 11 different factors for the developers, which are a categorisation of similar specific factors. This
means that factors such as, country of the developer and geographical location of the developer have been put together
into an overarching factor.

Gender of the developer, separated between male and female, has been acquired through parsing the about data of
users in Google+. This data indicates that a problem of trust exist and that the genders of the users are truly correct
cannot be a 100% trustworthy or even verifiable. With that in mind, it is shown that female developers have a higher
chance of getting accepted if they do not identify their gender. Furthermore, pull requests made by men were more
likely to be accepted than those made by women [11].

Experience of the developer is a widely used factor regarding the acceptance rate. With experience many papers look
at different aspects, but the main ones that keep reappearing are the number of submitted changes [12], the number
of commits (per time span) [13], the amount of interaction with the project [14] or a mix of these factors. It is noted
that developer experience plays a major role during code review and leads to a greater acceptance rate and a faster
response time [12]. Also, the contribution is more likely to not be re-opened and accepted with an experienced developer

Clic
k t

o BUY NOW!PD
F-XChange Editor

w
ww.pdf-xchange.com Clic

k t
o BUY NOW!PD

F-XChange Editor

w
ww.pdf-xchange.com

https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor


PAGE 5 - AUGUST 28, 2024

[13, 15, 14]. A general pattern regarding experience can be seen in figure 3. Within this figure, contributors with 20 to
50 months of experience are found the most productive and have the highest acceptance rates [10]. This is measures
as merge successes as opposed to merge failures. The more inexperienced developers (10 to 20 months) also seem
to have the most merge failures. Generally speaking, the pull request seems to have a greater acceptance rate with an
experienced contributor. [13]

Affiliation of contributor looks at the contributor and integrator affiliation. An integrator is more likely to accept the
contribution if the contributor is affiliated, either with the organization, project or the integrator. [12, 16, 17]. If the
contributor follows a core contributor, the acceptance rate is increase [16]. Being a collaborator on the project increases
the likelihood of acceptance by 63.6%, according to Tsay [17]. As can be seen from this, having an affiliation with the
organization, project or the developer indicates a positive correlation with acceptance rate.

Track record of the developer is an indicator that, surprisingly, was not ranked that high as a priority in the survey [8].
Despite that, if a contributor has submitted more pull requests previously, than a contributor’s pull request is more likely
to be accepted [18, 19]. Thus, a known contributor, has a higher chance of acceptance [8].

Figure 4: Logistic regression models of factors influencing pull request acceptance [20]

Geographical location indicates the country of the developer or regions close to each other. It holds true that when
contributors and integrators are either from the same geographical location [9] or from the same country [20] the chance
of pull requests getting accepted is higher than when they are from different geographical locations or countries. It is
worth to note, however, that the papers for this factor only looked at 17 locations based on GitHub as a primary source,
see figure 4. Being in the same country increases the chances of pull request acceptance by a factor of 1.2 in comparison
to the submitter and integrator being from different countries [20].

Level of participation is looked at through the number of patches of the contributors. This patch life cycle indicates
that casual integrators (< 20 patches) have a lower acceptance rate and a greater rejection rate as compared to core
integrators (>100 patches) [21]. Thus, core developers enjoy a higher acceptance rate than the peripheral developers
[22].

Clic
k t

o BUY NOW!PD
F-XChange Editor

w
ww.pdf-xchange.com Clic

k t
o BUY NOW!PD

F-XChange Editor

w
ww.pdf-xchange.com

https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor


PAGE 6 - AUGUST 28, 2024

Expertise of the integrator means the field or area in which the developer has a lot of skill in (i.e. specializes in). The
pull requests made by a contributor is more likely accepted if the contribution is in the expertise of the integrator [23].
In terms of delivery time, the rejection time is faster for contributions from core developers, while the acceptance time
is faster for causal developers [21].

(a) Interaction plot of test inclusion and
contribution contention

(b) Interaction plot of social distance
and contribution contention

(c) Interaction plot of prior interaction
and contribution contention

Figure 5: Acceptance in relation to test inclusion, social distance and prior interaction [17]

Activeness of the contributors indicates the effect that the amount of discussion has in the decision making of a pull
requests. This can be seen in relation to test inclusion, social distance and prior interaction in figure 5. Generally
speaking, pull requests with many associated comments indicate uncertainty and may signal controversy [24]. Based on
this, pull requests with many associated comments are much less likely to be accepted [24, 17]. It should also be noted
that if the reviewer of the pull request is an inactive developer, the pull request has a higher chance of staying open [25].

Submitter’s prior interaction looks at the previous pull requests submitted by the developer. Submitting the first pull
request is a factor that has the greatest influence in the rejection of the contribution [26]. When the first contribution
of a developer occurs via pull request, the chances of rejection are 3.38 times higher. Also, a developer with more
prior interaction submitting a pull request leads to a higher acceptance rate, increasing 35.6% [17]. Generally, it is
indicative that the more prior interaction the developer has, the bigger the acceptance rate becomes. Thus, there is a
positive correlation between the previous pull requests and the acceptance rate [27, 17, 26].

Relation between contributors is looked through 2 lenses. Propensity to trust and social distance, see the table A.1. A
high propensity to trust (agreeableness) leads to a higher pull request acceptance rate [28]. Furthermore, social distance
has the strongest influence on likelihood of acceptance as compared with other pull requests factors [17]. Social distance
increased the acceptance rate when the submitter follows the project manager. [17]

Type of developer indicates whether the developer is either a volunteer or employee in our case. In the case of the
developer being a volunteer the rejection rate of the pull request increases [29].

Our main observation is that experience and the contributor ’sticking around’ (i.e. continuing after the first (failed)
pull request) indicates a giant hurdle to overcome and increases the acceptance rates drastically. For the rest, it should
be noted that some of the results were taken from a survey, which made contrasting points, as it is opinion-based, in
regards to the data, like in the case of the track record of the developer. Multiple factors increasing the acceptance rate
are rather logical, but it is a good thing that the data also shows this. It is, however, a weird phenomenon in figure 3 that
the data of 50 to 60 months indicates such a stark difference between success and failure in the acceptance of the pull
request. Finally, it should also be noted that most of our papers got their data either from GitHub or from other papers,
whom made use of data from GitHub. This, with the fact that the ratio between datamined data and survey is pretty low
in regards to the developer, could suggest a bias within our results.

Clic
k t

o BUY NOW!PD
F-XChange Editor

w
ww.pdf-xchange.com Clic

k t
o BUY NOW!PD

F-XChange Editor

w
ww.pdf-xchange.com

https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor


PAGE 7 - AUGUST 28, 2024

6 Project

In total, 16 papers were used to indicate the factors. In figure 6 a distribution can be seen of how the studies were
conducted in these papers. Do note, however, that some papers used several means of conducting the studies. In regards
to the projects, datamining of large-scale projects was done through datamining (through small-scale projects or other
datamining options) (93.3%). We think that this has to do with the the data that is needed. Most of the data of the
projects on distributed version control systems such as GitHub, which means that mining has to be done most of the
times. Finally, one medium-scale surveys (6.7%), with 118 developers respectively, were used to attribute outcomes for
the factors.

Figure 6: How the studies were conducted in the papers
regarding projects.

Figure 7: How the outcomes were reached in the studies of
the papers regarding the projects.

When we take a look at all the findings of the paper for each factor we see that 91.7% leads to an increase in the
acceptance rate of the pull request if the factor is included or of the factor is incremented. 8.3% leads to an decrease in
the acceptance rate.

In total, we have 5 different factors for projects, which also contain some of the pull request factors like number of files
changed, number of commits.

Pull request system, is described as a piece of software that is used to create pull request instead of a mailing list or an
issue tracker. This system makes it easier for a developer to create and review a pull request. This factor leads to a
higher acceptance ratio and a quicker review time. [30]

Project age and maturity, is a measure of the lifetime of a project. During examination it was observed that this factor
has a high correlation with the programming language. Increasing this factor leads to a lower acceptance rate. [10, 17]

Figure 8: Multi-level mixed effects logistic model for pull request acceptance [17]

Programming language, looks at the language that the pull request is written in. Multiple papers found this factor,
however not every programming language is taken into aspect. We found some correlation between languages that have

Clic
k t

o BUY NOW!PD
F-XChange Editor

w
ww.pdf-xchange.com Clic

k t
o BUY NOW!PD

F-XChange Editor

w
ww.pdf-xchange.com

https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor


PAGE 8 - AUGUST 28, 2024

a higher acceptance rate (i.e. C, C#) and language that have a lower one (i.e. C++, Java). However, some languages
showed a higher rate in one research and a lower rate in another research. So for some language we could say that it
increases or decreases the acceptance rate, but for others we cannot say this. [10, 31]

Figure 9: Pull requests vs. Number of Developers [10]

Number of developers has an effect on the success or failure rate of the pull requests. As a factor, it is mainly looked
through the means of ’grow’ in the developer numbers in time and the effect of said grow. It is known that the more
developers participate in the projects, the more pull requests there are. The increase in the pull request also increase the
rate of unsuccessful pull requests exponentially. Thus, projects with a large developer crowd may make an excessive
number of failed pull requests, as can be seen in figure 9. However, the average number of pull requests does not
increase comparatively with higher participation [10, 27, 17]. It does increase almost regularly against increased
participation of the developers.

Figure 10: Cross-correlation (Spearman) among all dataset features. Blue color (or right slant) indicates positive
correlation, red color (or left slant) is negative correlation. The darker the color, the stronger the correlation. [27]

Popularity of the project, is measured by different means, some paper looked at the rating of the project and some
took the amount of followers. Both papers were contradiction each other. Some found an increase if the project was
more popular and some found a decrease in the acceptance rate. [27, 17]

Our observation about pull request factors is that the amount of modified files in a pull request have a huge influence
on the acceptance rate of the pull request. Also, the purpose of the pull request and the number of commits have a

Clic
k t

o BUY NOW!PD
F-XChange Editor

w
ww.pdf-xchange.com Clic

k t
o BUY NOW!PD

F-XChange Editor

w
ww.pdf-xchange.com

https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor


PAGE 9 - AUGUST 28, 2024

influence, on its acceptance rate. We find that the ’perfect’ pull request are small in changes but big in impact. The
main observation about project is that the lifetime of a project has the biggest influence on the pull request acceptance.
Older project tend to have a lower acceptance rate that new project. We think that this is inline with the complexity of
the project. If time increases, on average more features and more lines are added to a project. Most of the time this also
increases the complexity of the project.

Clic
k t

o BUY NOW!PD
F-XChange Editor

w
ww.pdf-xchange.com Clic

k t
o BUY NOW!PD

F-XChange Editor

w
ww.pdf-xchange.com

https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor


PAGE 10 - AUGUST 28, 2024

7 Process

In total there were 17 papers were used in determine all the factors that were influenced by the process of the projects.
Figure ?? shows how the studies were conducted in terms of the process. The amount of papers does not correlate with
the amount of factors found. This is because there were also papers used in order to validate results from other papers
or even contradict the papers.

Most studies of which were used to find the factors were using a form of datamining (55.6%), like the GHTorrent [5], to
determine the results from their studies. However an interesting observation is that compared to the other characteristics
analyzed during this literature survey (22.2%), more papers used surveys in order to get their results. The rest of the
papers conducted their research by looking at singular projects (22.2%).

Figure 11: How the studies were conducted in the papers
regarding process.

Figure 12: How the outcomes were reached in the studies
of the papers regarding the process.

The results of this part of the survey shows that the factors that were found do not necessarily have a trend in them
in terms of being favourable for acceptance or not. 50% of conclusions about the factors found lead to an increased
likelihood for the contribution being accepted, while on the other hand 39.1% of the conclusions talk about a negative
influence of the factor in terms of accepting the contribution. The rest of the papers (11.1%) show a neutral stance. In
total there are 10 factors found. The amount of conclusions differs from the amount of factors because there are papers
that contradict each other in terms of their conclusion and both of these conclusions were added in the survey. There are
a few factors that will be discussed in the next part because of their relevance.

Number of comments on pull request are a significant factor in the process that determines whether or not a
contribution gets accepted or not. Comments on the pull request serve as a discussion point where developers can
review and share thoughts about the contribution. The consensus is that if there are more comments on the pull request,
the contribution is more likely to be accepted [13, 32]. However, there is also a study that claims the exact opposite,
mainly that contributions with more comments are less likely to be accepted[17].

The type of comments on the pull-requests influence whether or not a contribution gets accepted or not. Comments
are still just comments and everyone can comment on pull requests, even if it is not meant to be a review. A study[33]
therefore concluded that positive comments affect the pull request acceptance likelihood positively, whereas the
percentage of negative comments affects negatively. The study was conducted by scraping 24 million pull requests
which had at least five comments and the comments were then classified as either being negative, neutral or positive.
From that they could correlate the type of comment to an acceptance likelihood.

Another thing to factor in is the difficulty of Git. Git is used for version control and a study concluded that the
inconsistency of Git commands and options and undo/redo Git commands are the influence factors of difficulties to
developers[34].

Conformation to the projects coding standard is very important when it comes to developing software. A mix of
different styles can easily lead to messed up and hard to maintain code. It is for this reason that integrators usually ask
for a certain standard to which all the contributions must be held. This can range from the code style to the way the
documentation must be kept up to date to following the process of development. It is therefore that a study concludes
that a contribution is more likely to be accepted if it adheres the coding practices of the project itself[35].

Reopened pull requests are also a factor. Pull requests can be closed off for various reasons, like the contribution is
not feasible for the project or the contribution is already covered in other pull requests. It is also possible for a pull
request to be reopened to continue development on the contribution. However, it is concluded that pull requests that are
reopened have a lower acceptance rates than non-reopened pull requests.[36]

Clic
k t

o BUY NOW!PD
F-XChange Editor

w
ww.pdf-xchange.com Clic

k t
o BUY NOW!PD

F-XChange Editor

w
ww.pdf-xchange.com

https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor


PAGE 11 - AUGUST 28, 2024

In modern systems, the use of Continuous Integration (CI) is often found in the project. It also factors in with the
acceptance rate. The availability of CI in a project hastens the process [37], increases the acceptance rate of pull requests
[38] and the amount of processed pull requests increases as well [39]. In even more detail, there is a paper[40] states
that PR opened with passed CI builds have 1.5 more chance of being merged than those failing. Such chances increase
up to 1.72 if the build passes at the end of the PR discussion.

On the other hand, there is also the use of automation that you can consider as a factor that influences the acceptance
rate. A study [41] has concluded after analyzing the usage of bots on OSS projects which had more that 2500 stars that
automation did not show any consistent statistically significant results across the analyzed projects.

Age of the pull request plays a role in the process as well. Pull requests have various reasons to stay open. Either the
project is abandoned or during the development the pull request lacks certain aspects that are desired by the integrators
of the project. It is concluded in the literature that a pull request is less likely to be accepted the longer the age [42]

Figure 13: Table that shows social and technical skills measured with participation fixation using an eye tracker[43]

An interesting factor is social and technical skills. Among these social skills can be classified the display name of the
contributor, the profile picture and popularity of their previous projects. On the other hand among the classification of

Clic
k t

o BUY NOW!PD
F-XChange Editor

w
ww.pdf-xchange.com Clic

k t
o BUY NOW!PD

F-XChange Editor

w
ww.pdf-xchange.com

https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor


PAGE 12 - AUGUST 28, 2024

technical skills are commit details, contribution activity and submission details. The conclusion of this study is that not
only the code but also other technical and social aspects are influencing the review process of the pull request.[43]

During the process of the project, a lot of different types hurdles can occur. It is therefore that the prioritization of
work can influence the acceptance rate of a pull request. The main problems when working with pull requests is
maintaining project quality and prioritization [44, 42]. This can mean that a pull request might not make it not because
the quality of the pull request is not good enough, but mainly because the pull requests contains functionality that is not
needed in the current stage of the project.

Observing the characteristics of the process of a pull request led us to conclude that most of the factors are influenced
by the conformation to the standards the project adheres. Software projects naturally want contributions of suitable
quality and that show unity with the work that is already there. More often than not a factor seems to be linked to either
good quality of code or bad quality of code. The literature concludes that if you want your pull request accepted in the
process of the pull request, it benefits if the pull requests is beneficial for the project and understands its philosophy and
practices.

Clic
k t

o BUY NOW!PD
F-XChange Editor

w
ww.pdf-xchange.com Clic

k t
o BUY NOW!PD

F-XChange Editor

w
ww.pdf-xchange.com

https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor


PAGE 13 - AUGUST 28, 2024

8 Code

In total, 23 papers were used to indicate the factors. In figure 14 we show the distribution of how the studies were
conducted in these papers.

Figure 14: How the studies were conducted in the papers
regarding the code.

Figure 15: How the outcomes were reached in the studies
of the papers regarding the code.

When looking at the outcomes we find that 48.4% of the papers show factors that lead to an increase of the acceptance
rate or decrease of the rejection rate of pull requests. 41.9% of the papers show factors that lead to an increase of the
rejection rate or decrease of the acceptance rate of pull requests. 6.5% of the papers show factors that do not show a
clear difference in acceptance rate nor rejection rate. Only 3.2% of the papers show factors that lead to an open pull
request. In figure 15 we show the distribution of papers talking about acceptance vs rejection, whether it is an increase
or decrease.

In total, we found 12 different code related factors, these are as followed:

The contribution quality talks about whether the non-functional characteristics (e.g. style of code) of the code are
understandable and elegant. There are studies that conclude that the pull request is more likely to be accepted if
non-functional characteristics of the code are understandable and elegant.[8, 45, 46]. There is however a study that
suggests that the quality of the code submitted in the pull request does not influence at all in terms of acceptance.[47]
The interesting part is that all the papers that suggested that it matters have done surveys among the integrators of pull
requests [8, 45, 46], while the study that suggests that the quality does not matter used machine learning techniques to
classify and measure its accuracy on the data.[47]

Comments in source code looks at the amount of comments added in the source code. A statistical model analyzing
the association of different pull request, submitter, and repository measures of contributions with the likelihood of the
contribution being accepted was created. This showed that an increase in comments in the source code increases the
pull request acceptance rate. [32]

Number of blank lines looks at the amount of blank lines in the source code of a pull requests in the project Ansible3.
This open source project was selected because it is the fourth on the list of most reviewed GitHub projects in 2017 and it
has a significant process. There are around 5.9K contributors in Ansible3, which is the tenth most-discussed repository.
The outcome is evaluated by looking at code contributions of the developers using the pull request acceptance rate. This
paper states that an increase in blank lines on the source decreases the pull-request acceptance rate. [48]

Number of changed lines looks at the number of changed lines included in the pull request. Multiple researches show
that an increase in changed lines of code have a negative effect on the acceptance rate. Different sorts of research, like a
survey and datamining, all had this outcome. [17, 48, 49, 50, 51]

A certain data analysis also showed the negative effect on the merge decision. [32] However, the developers they
asked about the influence of the size of the pull requests (in terms of lines of code) had split opinions. Only 56% of
the developers agreed that the number of changed lines affects the merge decision. This paper states, “A possible
explanation for this is that a larger PR has a higher chance of containing more than one “atomic” change, which is
against PR submission policies in many software projects. While developers may not mind accepting a large PR that
is coherent and single-purpose, they may feel more negatively about a large PR that is a collection of loosely related
changes.”

Clic
k t

o BUY NOW!PD
F-XChange Editor

w
ww.pdf-xchange.com Clic

k t
o BUY NOW!PD

F-XChange Editor

w
ww.pdf-xchange.com

https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor


PAGE 14 - AUGUST 28, 2024

Figure 16: The details of the top ten most reviewed projects[48]

Figure 17: Factors influencing PR review outcome[32]

Code style looks at the inconsistency of the code style for each pull request. This paper found that the inconsistency
of code style of pull requests decreases the pull request acceptance rate, though the effect of the inconsistency on the
acceptance rate is small. [52] To see how the code inconsistency was measured, look at A.4.

Number of tests, this factor is measured by the existence of test code in the pull request. One paper stated “In our
sample, 33% of the pull requests included modifications in test code, while 4% modified test code exclusively. Of the
pull re-quests that included modifications to test code, 83% were merged, which is similar to the average” [1] These
results were collected by looking at 291 projects from multiple programming languages. Another paper stated that the
existence of a test suite increases the acceptance rate, this information was conducted through surveys with a diverse
group of GitHub users.[53] Also, another paper stated that the existence of a test suite increases the acceptance rate.
This information was conducted by looking at 12,482 projects from the GitHub API. [14]

Annotations, this factor is measured by looking at disciplined and undisciplined annotations in 110 open source
projects. Undisciplined annotations are annotations of brackets that to not align with the code or individual tokens. In
these projects undisciplined annotations were changed to disciplined annotations by manually refactoring one annotation
per project. Submitting pull requests with these changed showed that the acceptance rate increases with disciplined
annotation. [54]

The functionality of the code is also factor that determines whether or not the pull request gets accepted or denied,
This must be reviewed and deemed suitable for the project. Multiple requests doing the same thing or a pull request that
does not change anything that is needed are examples of this. In the literature it is found that if the functionality of the
code is not needed and/or a duplicate to other pull requests, the rejection rate of the pull request increases [55]. This
study however has the prerequisite that the contribution is made by a quasi-contributor, which is someone identified as a
newcomer to the project who had no previous accepted contribution to the project.

Clic
k t

o BUY NOW!PD
F-XChange Editor

w
ww.pdf-xchange.com Clic

k t
o BUY NOW!PD

F-XChange Editor

w
ww.pdf-xchange.com

https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor


PAGE 15 - AUGUST 28, 2024

Number of commits, is measured by observing the pull request and observing the amount of commits that have been
made in the pull request. The number of commits can indicate that the pull request has a lot of changes, since every
commit can be considered as one contribution. Different papers have found this as factor influencing the acceptance
rate. However, the outcomes were divided. Some papers found that the acceptance rate increases if the number of
commits increases increase [26, 27], while others found that the acceptance rate decreases. [49]

Complexity, the cyclomatic complexity is used to compute this factor. If the cyclomatic complexity of a piece of code
increases, it is harder to understand for developers. This factor leads to a lower acceptance ratio because most of the
project will have an open status. The review time of the pull request also increases. [56]

Purpose of the Pull-request, looks at what problem the pull request solves, it could be a bug fix, new feature, etc.
Multiple papers found this factor and mentioned that bug fixes and documentation changes were accepted quicker and
accepted more often than new features or big changes. So we could say that the purpose of the pull request does have
an influence on the acceptance ratio. [50, 57]

Modified files, is measured by observing the pull request and observing the amount of files that have been modified. 4
papers found this factor and all 4 paper stated that if the amount of files that were modified increases the acceptance rate
of the pull request decreases. For this unanimous result we can conclude that if the number of modified files increases
the acceptance rate decreases. [48, 31, 58, 27, 17]

Expected is that the main code related factor would be the quality of the commits added in the pull-request. By looking
at all the code related factors that influence the acceptance rate of pull-requests, our main observation is that the amount
of code that is edited in a pull request has a large influence on the acceptance rate. We find that the pull requests are
most likely to be accepted if the changes are small and clear. Small changes in the sense of literally not many changes
in lines, but also in the coding style. Clear changes in the sense that there are no useless changes like blank lines,
understandable commenting and disciplined annotation.

Clic
k t

o BUY NOW!PD
F-XChange Editor

w
ww.pdf-xchange.com Clic

k t
o BUY NOW!PD

F-XChange Editor

w
ww.pdf-xchange.com

https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor


PAGE 16 - AUGUST 28, 2024

9 Discussion

In this section, we discuss the decisions made during the process of writing this literature survey, while also evaluating
the process of researching the topic.

Firstly, almost all the literature was found by using Google Scholar. While other search engines are available, most of
the literature has been retrieved with Google Scholar. It should be noted that we have collected all the papers in the
relevant time period (2009-2019) related to our search terms available on Google Scholar and using snowballing we
found more papers without the direct use of Google Scholar.

Secondly, the topics of the papers were sometimes not relevant to our main research question and researched something
that was not of direct interest to our literature review. However, these papers were still used because they did contain
useful information about a factor that was indeed used in pull-based development.

As stated before, it should also be noted that most of our papers got their data either from Github or from other papers,
whom made use of data from Github. This, with the fact that the ratio between datamined data and survey is pretty low
in regards to the developer, could suggest a bias within our results.

Moreover, at the start of the project there was a division in characteristics. It could be argued that these four
characteristics (developer, project, process, code) do not cover the whole range of factors, but the subsequent collection
did not search on characteristics, but rather single factors whom were subsequently categorised into these characteristics.

Also, it could be argued that in the fast evolving discipline of software development the time frame used to search these
factors could lead to outdated factors, whom were once important but could now be irrelevant to the process. The time
frame was however chosen because it could be argued that this would deliver the survey a good amount of relevant
factors, while also having a good quantity of factors as well.

Furthermore, the categories process and code rely more on surveys compared to the other categories, which means that
the factors within these categories might have a bias from the developers that were surveyed, because it is a subjective
factor and it is not measured objectively.

Finally, the methodology states the search terms used in the literature survey. It could happen that these do not retrieve
all the relevant papers. However, all the search terms used were the most relevant to the topic and to our understanding
we have used all the relevant search terms.

When looking at the outcomes we find that more papers show factors that lead to an increase of the acceptance rate of
pull requests in comparison to outcomes based on the rejection rate. In the future more papers should give insight on
the factors influencing the rejection of pull requests.

10 Conclusion

The goal of this work was to obtain factors from papers about the pull-based development model and with the obtained
factors look at the correlation of every factor with the acceptance rate. From the initial point of view the code quality is
the only factor that has an influence on the decision making. However, when we analyzed around 80 papers, we found
that this was not the case. Multiple varying factors that have an influence on the decision making were found. The
distribution on how these factors were obtained can be seen in figure 18. The total rates in terms of acceptance (73.8%),
rejection (20.2%), open (1.2%) and neutral (4.8%) can be seen in figure 19.

Figure 18: Total distribution of methods used of all papers. Figure 19: Total rates of acceptance vs. rejection.

Clic
k t

o BUY NOW!PD
F-XChange Editor

w
ww.pdf-xchange.com Clic

k t
o BUY NOW!PD

F-XChange Editor

w
ww.pdf-xchange.com

https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor


PAGE 17 - AUGUST 28, 2024

After analyzing the type of factors that were found, we concluded that 4 categories of factors do influence the decision
making. The categories are developer, project, process and code. For the developer we intrinsically look at factors
related to the skill of the developer (i.e. track-record), the environment of the developer (i.e. geographical location) and
the social factors (i.e. prior interaction). For the project we intrinsically look at factors related to the unchangeable
project settings (i.e. the age of the project) and changeable project settings (i.e. programming language). For the process
we view the pull based development model, as what happens before, during and after the pull request. With this, you
can view the pull request process as a certain pipeline, with factors related before you go into the pipeline (i.e. difficulty
of Git), during the process (i.e. continuous integration) and after the pipeline (i.e. contribution quality). For the code
we did not found any intrinsic factors. All factors were related to either the amount of the code modified (i.e. number
of changed lines) or the absence of some code (i.e. code style). To summarize, factors related to the contributors and
integrators fall under developer, those related to the actual writing of code fall under code, those related to the life-cycle
of the pull request fall under process and, finally, the factors related to specifications surrounding a project fall under
project. Furthermore, we’ve found in total 42 different factors influencing the acceptance rate of pull-request. From
these, 6 are code related, 12 are developer related, 10 are project related and 14 are related to the process. We noticed
after comparing the distributions of the categories that most of the data was gathered through datamining, with the
exception of process (and code) in which a sizeable portion of the factors come from surveys.

To answer what factors influence pull request decision making, we created a table with the outcomes, per factor, and
how they were collected. With this, a positive effect in the decision making indicates a higher acceptance rate or lower
rejection rate, while a negative effect in the decision making indicates a higher rejection rate or lower acceptance rate.
Our main findings are as follows:

1. Developer. Multiple papers found that the experience, the track record of the developer, the affiliation of the
developer with the project and the prior interaction between the developer and core contributor influences the
decision making of the pull request. And all papers that found these factors individually stated that an increase
in these factors leads to the a positive effect in the decision making. Also, it is indicative in multiple papers
that casual developers or first-time contributors have a higher negative effect on the decision making.

2. Project. Multiple papers found that the number of developers and the age of the project influence the decision
making of the pull request. And all papers that found these factors individually stated that an increase in these
factors lead to a negative effect in the decision making. Furthermore, for the purpose of the pull request and
the popularity of the project, multiple papers that found these factors stated varying conclusions related to the
effect in the decision making. For example, in the case of the purpose of the pull request some papers found
that a bug fix leads to a positive correlation on the acceptance, while others stated that a pull request that adds
a new feature leads to a negative correlation on the acceptance. And in the case of popularity, some papers
stated that when an increase in popularity occurs, it had a positive effect and some stated that it had a negative
effect on the decision making.

3. Process. Multiple papers state that number of comments and the type of comments on a pull request has an
influence on the decision making. For the papers that found the number of comments as an influencing factor,
some found that an increase in comments has a positive effect while other papers found a negative effect.
However, a majority found that it an increase has a negative effect on the decision making. As for the papers
that found type of comments an influencing factor, all of them stated that negatively coloured comment has a
negative effect on the decision making and positive comment has a positive effect on the decision making. It
is generally accepted, within the papers that found the age of a pull request as an influencing factor on the
decision making, that an increase in this factor leads to a negative effect on the decision making.

4. Code. As said before, code quality is initially expected to be the main influencing factor, but besides the factor
code quality, multiple papers found that number of changed lines, modified files and number of tests are a
big influence on the decision making. Small and simple changes have the most positive effect on the decision
making.

Clic
k t

o BUY NOW!PD
F-XChange Editor

w
ww.pdf-xchange.com Clic

k t
o BUY NOW!PD

F-XChange Editor

w
ww.pdf-xchange.com

https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor


PAGE 18 - AUGUST 28, 2024

References

[1] Georgios Gousios, Martin Pinzger, and Arie van Deursen. An exploratory study of the pull-based software
development model. In Proceedings of the 36th International Conference on Software Engineering, pages
345–355. ACM, 2014.

[2] Anja Guzzi, Alberto Bacchelli, Michele Lanza, Martin Pinzger, and Arie van Deursen. Communication in open
source software development mailing lists. In Proceedings of the 10th Working Conference on Mining Software
Repositories, MSR ’13, pages 277–286, Piscataway, NJ, USA, 2013. IEEE Press.

[3] Brian de Alwis and Jonathan Sillito. Why are software projects moving from centralized to decentralized version
control systems? In Proceedings of the 2009 ICSE Workshop on Cooperative and Human Aspects on Software
Engineering, pages 36–39. IEEE Computer Society, 2009.

[4] N.B. Ruparelia. The history of version control. ACM SIGSOFT Software Engineering Notes, 35:5–9, 2010.

[5] Georgios Gousios. The ghtorent dataset and tool suite. In Proceedings of the 10th working conference on mining
software repositories, pages 233–236. IEEE Press, 2013.

[6] Linux Torvalds. git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git, January 2012.

[7] Mozilla. Firefox input, http://input.mozilla.org/, 2012.

[8] Georgios Gousios, Andy Zaidman, Margaret-Anne Storey, and Arie Van Deursen. Work practices and challenges
in pull-based development: the integrator’s perspective. In Proceedings of the 37th International Conference on
Software Engineering-Volume 1, pages 358–368. IEEE Press, 2015.

[9] Ayushi Rastogi. Do biases related to geographical location influence work-related decisions in github? In
Proceedings of the 38th International Conference on Software Engineering Companion, pages 665–667. ACM,
2016.

[10] Mohammad Masudur Rahman and Chanchal K Roy. An insight into the pull requests of github. In Proceedings of
the 11th Working Conference on Mining Software Repositories, pages 364–367. ACM, 2014.

[11] Josh Terrell, Andrew Kofink, Justin Middleton, Clarissa Rainear, Emerson Murphy-Hill, Chris Parnin, and Jon
Stallings. Gender differences and bias in open source: Pull request acceptance of women versus men. PeerJ
Computer Science, 3:e111, 2017.

[12] Olga Baysal, Oleksii Kononenko, Reid Holmes, and Michael W Godfrey. The influence of non-technical factors
on code review. In 2013 20th Working Conference on Reverse Engineering (WCRE), pages 122–131. IEEE, 2013.

[13] Yujuan Jiang, Bram Adams, and Daniel M German. Will my patch make it? and how fast?: Case study on the
linux kernel. In Proceedings of the 10th Working Conference on Mining Software Repositories, pages 101–110.
IEEE Press, 2013.

[14] Jason Tsay, Laura Dabbish, and James Herbsleb. Let’s talk about it: evaluating contributions through discussion
in github. In Proceedings of the 22nd ACM SIGSOFT international symposium on foundations of software
engineering, pages 144–154. ACM, 2014.

[15] A. Ihara A. Jongyindee, M. Ohira and K. Matsumoto. Good or bad committers? a case study of committers
cautiousness and the consequences on the bug fixing process in the eclipse project. In The Joint Conference of the
21th International workhop on Software Measurement and the 6th International Conference on Software Process
and Product Measurement, pages 116–125. IWSM/MENSURA2011, 2011.

[16] Manoel Limeira de Lima Júnior, Daricélio Moreira Soares, Alexandre Plastino, and Leonardo Murta. Developers
assignment for analyzing pull requests. In Proceedings of the 30th Annual ACM Symposium on Applied Computing,
pages 1567–1572. ACM, 2015.

[17] Jason Tsay, Laura Dabbish, and James Herbsleb. Influence of social and technical factors for evaluating contri-
bution in github. In Proceedings of the 36th international conference on Software engineering, pages 356–366.
ACM, 2014.

[18] Damien Legay, Alexandre Decan, and Tom Mens. On the impact of pull request decisions on future contributions.
arXiv preprint arXiv:1812.06269, 2018.

[19] Philip J. Guo, Thomas Zimmermann, Nachiappan Nagappan, and Brendan Murphy. Characterizing and predicting
which bugs get fixed: An empirical study of microsoft windows. In Proceedings of the 32Nd ACM/IEEE
International Conference on Software Engineering - Volume 1, ICSE ’10, pages 495–504, New York, NY, USA,
2010. ACM.

Clic
k t

o BUY NOW!PD
F-XChange Editor

w
ww.pdf-xchange.com Clic

k t
o BUY NOW!PD

F-XChange Editor

w
ww.pdf-xchange.com

https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor


PAGE 19 - AUGUST 28, 2024

[20] Ayushi Rastogi, Nachiappan Nagappan, Georgios Gousios, and André van der Hoek. Relationship between
geographical location and evaluation of developer contributions in github. In Proceedings of the 12th ACM IEEE
International Symposium on Empirical Software Engineering and Measurement, page 22. ACM, 2018.

[21] Olga Baysal, Oleksii Kononenko, Reid Holmes, and Michael W Godfrey. The secret life of patches: A firefox
case study. In 2012 19th Working Conference on Reverse Engineering, pages 447–455. IEEE, 2012.

[22] Amiangshu Bosu and Jeffrey C Carver. Impact of developer reputation on code review outcomes in oss projects:
An empirical investigation. In Proceedings of the 8th ACM/IEEE international symposium on empirical software
engineering and measurement, page 33. ACM, 2014.

[23] P.C. Rigby and M.-A Storey. Understanding broadcast based peer review on open source software projects. In
Proceedings of the 33rd International Conference on Software Engineering, pages 541–550. ACM, 2011.

[24] Jing Jiang, Yun Yang, Jiahuan He, Xavier Blanc, and Li Zhang. Who should comment on this pull request?
analyzing attributes for more accurate commenter recommendation in pull-based development. Information and
Software Technology, 84:48–62, 2017.

[25] Jing Jiang, David Lo, Xinyu Ma, Fuli Feng, and Li Zhang. Understanding inactive yet available assignees in
github. Information and Software Technology, 91:44–55, 2017.

[26] Daricélio Moreira Soares, Manoel L de Lima Júnior, Leonardo Murta, and Alexandre Plastino. Rejection factors
of pull requests filed by core team developers in software projects with high acceptance rates. In 2015 IEEE 14th
International Conference on Machine Learning and Applications (ICMLA), pages 960–965. IEEE, 2015.

[27] Georgios Gousios and Andy Zaidman. A dataset for pull-based development research. In Proceedings of the 11th
Working Conference on Mining Software Repositories, pages 368–371. ACM, 2014.

[28] Fabio Calefato, Filippo Lanubile, and Nicole Novielli. A preliminary analysis on the effects of propensity to trust
in distributed software development. In Proceedings of the 12th International Conference on Global Software
Engineering, ICGSE ’17, pages 56–60, Piscataway, NJ, USA, 2017. IEEE Press.

[29] Gustavo Pinto, Luiz Felipe Dias, and Igor Steinmacher. Who gets a patch accepted first?: Comparing the
contributions of employees and volunteers. In Proceedings of the 11th International Workshop on Cooperative
and Human Aspects of Software Engineering, CHASE ’18, pages 110–113, New York, NY, USA, 2018. ACM.

[30] Jiaxin Zhu, Minghui Zhou, and Audris Mockus. Effectiveness of code contribution: From patch-based to pull-
request-based tools. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, pages 871–882. ACM, 2016.

[31] Daricélio Moreira Soares, Manoel Limeira de Lima Júnior, Leonardo Murta, and Alexandre Plastino. Acceptance
factors of pull requests in open-source projects. In Proceedings of the 30th Annual ACM Symposium on Applied
Computing, pages 1541–1546. ACM, 2015.

[32] Oleksii Kononenko, Tresa Rose, Olga Baysal, Michael Godfrey, Dennis Theisen, and Bart de Water. Studying pull
request merges: A case study of shopify’s active merchant. In Proceedings of the 40th International Conference
on Software Engineering: Software Engineering in Practice, ICSE-SEIP ’18, pages 124–133, New York, NY,
USA, 2018. ACM.

[33] Rahul Iyer. Effects of personality traits and emotional factors in pull request acceptance. Master’s thesis, University
of Waterloo, 2019.

[34] Yusuke Saito, Kenji Fujiwara, Hiroshi Igaki, Norihiro Yoshida, and Hajimu Iida. How do github users feel with
pull-based development? In 2016 7th International Workshop on Empirical Software Engineering in Practice
(IWESEP), pages 7–11. IEEE, 2016.

[35] B.D. Sethanandha, Bart Massey, and William Jones. Managing open source contributions for software project
sustainability. pages 1 – 9, 08 2010.

[36] Jing Jiang, Abdillah Mohamed, and Li Zhang. What are the characteristics of reopened pull requests? a case study
on open source projects in github. IEEE Access, 7:102751–102761, 2019.

[37] Yue Yu, Gang Yin, Tao Wang, Cheng Yang, and Huaimin Wang. Determinants of pull-based development in the
context of continuous integration. Science China Information Sciences, 59(8):080104, 2016.

[38] Samim Mirhosseini and Chris Parnin. Can automated pull requests encourage software developers to upgrade
out-of-date dependencies? In Proceedings of the 32Nd IEEE/ACM International Conference on Automated
Software Engineering, ASE 2017, pages 84–94, Piscataway, NJ, USA, 2017. IEEE Press.

[39] Bogdan Vasilescu, Yue Yu, Huaimin Wang, Premkumar Devanbu, and Vladimir Filkov. Quality and productivity
outcomes relating to continuous integration in github. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, pages 805–816. ACM, 2015.

Clic
k t

o BUY NOW!PD
F-XChange Editor

w
ww.pdf-xchange.com Clic

k t
o BUY NOW!PD

F-XChange Editor

w
ww.pdf-xchange.com

https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor


PAGE 20 - AUGUST 28, 2024

[40] Fiorella Zampetti, Gabriele Bavota, Gerardo Canfora, and Massimiliano Di Penta. A study on the interplay
between pull request review and continuous integration builds. In 2019 IEEE 26th International Conference on
Software Analysis, Evolution and Reengineering (SANER), pages 38–48. IEEE, 2019.

[41] Mairieli Wessel, Bruno Mendes de Souza, Igor Steinmacher, Igor S. Wiese, Ivanilton Polato, Ana Paula Chaves,
and Marco A. Gerosa. The power of bots: Characterizing and understanding bots in oss projects. Proc. ACM
Hum.-Comput. Interact., 2(CSCW):182:1–182:19, November 2018.

[42] Georgios Gousios, Margaret-Anne Storey, and Alberto Bacchelli. Work practices and challenges in pull-based
development: the contributor’s perspective. In 2016 IEEE/ACM 38th International Conference on Software
Engineering (ICSE), pages 285–296. IEEE, 2016.

[43] Denae Ford, Mahnaz Behroozi, Alexander Serebrenik, and Chris Parnin. Beyond the code itself: how programmers
really look at pull requests. In Proceedings of the 41st International Conference on Software Engineering: Software
Engineering in Society, pages 51–60. IEEE Press, 2019.

[44] Di Chen, Kathryn T Stolee, and Tim Menzies. Replication can improve prior results: a github study of pull request
acceptance. In Proceedings of the 27th International Conference on Program Comprehension, pages 179–190.
IEEE Press, 2019.

[45] Mehrdad Nurolahzade, Seyed Mehdi Nasehi, Shahedul Huq Khandkar, and Shreya Rawal. The role of patch
review in software evolution: an analysis of the mozilla firefox. In EVOL/IWPSE, 2009.

[46] M. V. Mäntylä and C. Lassenius. What types of defects are really discovered in code reviews? IEEE Transactions
on Software Engineering, 35(3):430–448, 2009.

[47] Valentina Lenarduzzi, Vili Nikkola, Nyyti Saarimäki, and Davide Taibi. Does code quality affect pull request
acceptance? an empirical study. arXiv preprint arXiv:1908.09321, 2019.

[48] Panthip Pooput and Pornsiri Muenchaisri. Finding impact factors for rejection of pull requests on github. In
Proceedings of the 2018 VII International Conference on Network, Communication and Computing, ICNCC 2018,
pages 70–76, New York, NY, USA, 2018. ACM.

[49] Nikhil Khadke, Ming Han Teh, and Minghan Shen. Predicting acceptance of github pull requests. 2012.
[50] Jennifer Marlow, Laura Dabbish, and Jim Herbsleb. Impression formation in online peer production: activity

traces and personal profiles in github. In Proceedings of the 2013 conference on Computer supported cooperative
work, pages 117–128. ACM, 2013.

[51] Passakorn Phannachitta, Pijak Jirapiwong, Akinori Ihara, Masao Ohira, and Ken-Ichi Matsumoto. Understanding
oss openness through relationship between patch acceptance and evolution pattern. In Proceedings of the
International Workshop on Empirical Software Engineering in Practice 2011 (IWESEP 2011), 2011.

[52] Weiqin Zou, Jifeng Xuan, Xiaoyuan Xie, Zhenyu Chen, and Baowen Xu. How does code style inconsistency
affect pull request integration? an exploratory study on 117 github projects. Empirical Software Engineering,
pages 1–33, 2019.

[53] Raphael Pham, Leif Singer, Olga Liskin, Fernando Figueira Filho, and Kurt Schneider. Creating a shared
understanding of testing culture on a social coding site. In Proceedings of the 2013 International Conference on
Software Engineering, pages 112–121. IEEE Press, 2013.

[54] Romero Malaquias, Márcio Ribeiro, Rodrigo Bonifácio, Eduardo Monteiro, Flávio Medeiros, Alessandro Garcia,
and Rohit Gheyi. The discipline of preprocessor-based annotations does #ifdef tag n’t #endif matter. In Proceedings
of the 25th International Conference on Program Comprehension, ICPC ’17, pages 297–307, Piscataway, NJ,
USA, 2017. IEEE Press.

[55] Igor Steinmacher, Gustavo Pinto, Igor Scaliante Wiese, and Marco A. Gerosa. Almost there: A study on quasi-
contributors in open source software projects. In Proceedings of the 40th International Conference on Software
Engineering, ICSE ’18, pages 256–266, New York, NY, USA, 2018. ACM.

[56] Vishal Midha, Rahul Singh, Prashant Palvia, and Nir Kshetri. Improving open source software maintenance.
Journal of Computer Information Systems, 50(3):81–90, 2010.

[57] Rohan Padhye, Senthil Mani, and Vibha Singhal Sinha. A study of external community contribution to open-source
projects on github. In Proceedings of the 11th Working Conference on Mining Software Repositories, pages
332–335. ACM, 2014.

[58] T. Zimmerman G. Jeong, S. Kim and K. Yi. Improving code review by predicting reviewers and acceptance of
patches. ROSAEC-2009-006, 2009.

[59] Charles J Clopper and Egon S Pearson. The use of confidence or fiducial limits illustrated in the case of the
binomial. Biometrika, 26(4):404–413, 1934.

Clic
k t

o BUY NOW!PD
F-XChange Editor

w
ww.pdf-xchange.com Clic

k t
o BUY NOW!PD

F-XChange Editor

w
ww.pdf-xchange.com

https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor


PAGE 21 - AUGUST 28, 2024

[60] Corinne A Moss-Racusin, John F Dovidio, Victoria L Brescoll, Mark J Graham, and Jo Handelsman. Sci-
ence faculty’s subtle gender biases favor male students. Proceedings of the National Academy of Sciences,
109(41):16474–16479, 2012.

[61] Foyzur Rahman and Premkumar Devanbu. Ownership, experience and defects: A fine-grained study of authorship.
In Proceedings of the 33rd International Conference on Software Engineering, pages 491–500, 2011.

[62] Murtuza Mukadam, Christian Bird, and Peter C Rigby. Gerrit software code review data from android. In 2013
10th Working Conference on Mining Software Repositories (MSR), pages 45–48. IEEE, 2013.

[63] Yguaratã Cerqueira Cavalcanti, Paulo Anselmo da Mota Silveira Neto, Ivan do Carmo Machado, Tassio Ferreira
Vale, Eduardo Santana de Almeida, and Silvio Romero de Lemos Meira. Challenges and opportunities for
software change request repositories: a systematic mapping study. Journal of Software: Evolution and Process,
26(7):620–653, 2014.

[64] Thomas Zimmermann, Andreas Zeller, Peter Weissgerber, and Stephan Diehl. Mining version histories to guide
software changes. IEEE Transactions on Software Engineering, 31(6):429–445, 2005.

[65] Jing Liu, Jiahao Li, and Lulu He. A comparative study of the effects of pull request on github projects. In 2016
IEEE 40th Annual Computer Software and Applications Conference (COMPSAC), volume 1, pages 313–322.
IEEE, 2016.

[66] Yue Yu, Huaimin Wang, Vladimir Filkov, Premkumar Devanbu, and Bogdan Vasilescu. Wait for it: determinants
of pull request evaluation latency on github. In 2015 IEEE/ACM 12th Working Conference on Mining Software
Repositories, pages 367–371. IEEE, 2015.

[67] Yao Lu, Xinjun Mao, Gang Yin, Tao Wang, and Yu Bai. Using pull-based collaborative development model in
software engineering courses: A case study. In International Conference on Database Systems for Advanced
Applications, pages 399–410. Springer, 2017.

[68] Olga Baysal, Oleksii Kononenko, Reid Holmes, and Michael W. Godfrey. Investigating technical and non-technical
factors influencing modern code review. Empirical Softw. Engg., 21(3):932–959, June 2016.

[69] A. Ihara M. Ohira P. Phannachitta, P. Jirapiwong and K. Matsumoto. An analysis of gradual patch application: A
better explanation of patch acceptance. In The Joint Conference of the 21th International workhop on Software
Measurement and the 6th International Conference on Software Process and Product Measurement, pages 106–115.
IWSM/MENSURA2011, 2011.

[70] Alberto Bacchelli, Marco D’Ambros, and Michele Lanza. Extracting source code from e-mails. In Proceedings of
the 2010 IEEE 18th International Conference on Program Comprehension, ICPC ’10, pages 24–33, Washington,
DC, USA, 2010. IEEE Computer Society.

[71] Nicolas Bettenburg, Rahul Premraj, Thomas Zimmermann, and Sunghun Kim. Extracting structural information
from bug reports. In Proceedings of the 2008 International Working Conference on Mining Software Repositories,
MSR ’08, pages 27–30, New York, NY, USA, 2008. ACM.

[72] Peter Weissgerber, Daniel Neu, and Stephan Diehl. Small patches get in! In Proceedings of the 2008 International
Working Conference on Mining Software Repositories, MSR ’08, pages 67–76, New York, NY, USA, 2008. ACM.

[73] Rajdeep Grewal, Gary L. Lilien, and Girish Mallapragada. Location, location, location: How network embedded-
ness affects project success in open source systems. Manage. Sci., 52(7):1043–1056, July 2006.

[74] Jin Xu, Yongqin Gao, S. Christley, and G. Madey. A topological analysis of the open souce software development
community. In Proceedings of the 38th Annual Hawaii International Conference on System Sciences, pages
198a–198a, Jan 2005.

[75] Daricélio M Soares, Manoel L de Lima Júnior, Alexandre Plastino, and Leonardo Murta. What factors influence
the reviewer assignment to pull requests? Information and Software Technology, 98:32–43, 2018.

[76] Yida Tao, Donggyun Han, and Sunghun Kim. Writing acceptable patches: An empirical study of open source
project patches. In 2014 IEEE International Conference on Software Maintenance and Evolution, pages 271–280.
IEEE, 2014.

Clic
k t

o BUY NOW!PD
F-XChange Editor

w
ww.pdf-xchange.com Clic

k t
o BUY NOW!PD

F-XChange Editor

w
ww.pdf-xchange.com

https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor


PAGE 22 - AUGUST 28, 2024

A Table: factors influencing pull-request decision making

Developer

Factor How the factor is mea-
sured

Outcomes How the study is conducted Explanation

Gender of
the devel-
oper

First, the author of
the paper [11] extracts
the email addresses of
GitHub users in GHTor-
rent [5]. For each email
address, the author uses
the search engine in the
Google+ social network
to search for users with
that email address and
parse their about data and
include only the genders
‘Male’ and ‘Female’.

This paper [11] states that
a female developer submit-
ting a pull-request leads to a
higher acceptance rate of the
pull-request, if their gender
is not identifiable. Pull re-
quests made by women were
less likely to be accepted
than those made by men.

Analyzing GitHub data through
GHTorrent [5] and evaluate whether
pull requests from women are ac-
cepted less often. Out of 4,037,953
GitHub user profiles with email ad-
dresses, the authors were able to
identify 1,426,127 (35.3%) of them
as men or women through their pub-
lic Google+ profiles. The merge rate
was calculated, with the correspond-
ing confidence interval. [59].

The study, based on [60], hypoth-
esized that pull requests made by
women were less likely to be ac-
cepted than those made by men.
Prior work on gender bias in hir-
ing suggests that this hypothesis
may be true. The hypothesis is not
only false, but it is in the opposite
direction than the author expected.
Women tend to have their pull re-
quests accepted at a higher rate than
men.

Experience
of the de-
veloper

The authors of the pa-
per [12] extracted, pre-
pocessed, identified the
factors affecting review
delays and outcomes and
performed data analysis
on the WebKit code re-
view data from Bugzilla1.
In order to assess whether
contributor experience in-
fluence review accep-
tance, the paper calcu-
lates the number of sub-
mitted changes for each
contributor and then dis-
cretizes patch owners ac-
cording to their contribu-
tions.

The paper [12] concludes
that more experience leads
to faster response time and
greater acceptance rate. De-
veloper experience plays a
major role during code re-
view.

The study was conducted through
extracted this data by scraping
Bugzilla for all patches submitted
between April 12, 2011 and Decem-
ber 12, 2012. The data consists of
17,459 bugs, 34,749 patches, 763
email addresses, and 58,400 review-
related flags.

The authors correlate experience of
the contributor to activity of the de-
veloper. So the more active the
developer is, the more experienced
they deem him.

The paper [13] measures
data through extracting
data from an OSS project
and putting it through
analysis. Developers
who have had a commit
being merged into Linus
Torvalds’ repository [6]
before are taken into con-
sideration as a positive
outcome.

The result of the paper [13]
indicates that the contribu-
tion is more likely to be ac-
cepted with an experienced
contributor.

The authors datamined and analyzed
the patched that make it to an offi-
cial release within Linus Torvald’s
repository of the Linux Kernel [6],
which contains all commit informa-
tion of accepted patches from June
26, 2005 to December 31, 2012.

This study [13] mirrors the results
by other studies conducted on this
factor.

1https://bugs.WebKit.org/

Clic
k t

o BUY NOW!PD
F-XChange Editor

w
ww.pdf-xchange.com Clic

k t
o BUY NOW!PD

F-XChange Editor

w
ww.pdf-xchange.com

https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor


PAGE 23 - AUGUST 28, 2024

The paper [14] created
and analyzed a dataset of
both interview data and
contribution discussions
from the social open
source software hosting
site GitHub.

The contribution is more
likely to be not be re-opened
with an experienced devel-
oper [15, 14]. “The submit-
ter’s prior interaction on a
project also had a positive
association with acceptance.”
[14]

From a larger dataset of 659,501
pull requests across 12,482 GitHub
projects, the authors created a sam-
ple of highly discussed pull requests.
Highly discussed indicates that the
number of commits is one standard
deviation higher than the mean in
the dataset.

This study mirrors the results by
other studies conducted on this fac-
tor.

The authors look at the
pull requests in relation
to developer experience
in months. The factor is
measured based on these
two parts within the MSR
challenge dataset [5].

Contributors with 20 months
to 50 months of experience
are found the most produc-
tive and have the highest ac-
ceptance rate. Contributors
within that time-frame have
greater merge successes as
opposed to merge failures.
This also holds within 60
to 70 months. Contributors
within a span of 10 to 20
months have a greater failure
rate and, surprisingly, this
is also the case for contribu-
tors between 50 to 60 months.
This indicates, as the paper
[10] states, that more expe-
rience seems to indicate a
greater acceptance rate.

Collection of the committers activ-
ities and rewriting it in the form
of patterns that emerge. In this
study, the authors conduct a compar-
ative study between successful and
unsuccessful pull requests made to
78 GitHub base projects by 20,142
developers from 103,192 forked
projects. [10]

“Number of developers involved
into a project along with their work-
ing experience with the project are
also two contributing factors that
can influence the success and fail-
ure rate of the pull requests.” [10]

Affiliation
of contrib-
utor

The authors of the pa-
per [12] extracted, pre-
pocessed, identified the
factors affecting review
delays and outcomes and
performed data analysis
on the WebKit code re-
view data from.

According to the paper [12],
an integrator is more likely
to accept or be positive if
the contributor is affiliated
with the organization of the
project itself.

The study was conducted through
extracted this data by scraping
Bugzilla for all patches submitted
between April 12, 2011 and Decem-
ber 12, 2012. The data consists of
17,459 bugs, 34,749 patches, 763
email addresses, and 58,400 review-
related flags.

From pair-wise comparison, the au-
thors found that there is statistically
significant difference between pos-
itivity of Apple reviewers towards
their own patches to the patches of
both Google and ’the rest’. The
other pair that was statistically dif-
ferent is positivity of Google review-
ers between their own patches and
patches from ’the rest’. Possible ex-
planations for this include that there
is a clear bias among Apple review-
ers, or that Apple patches are of ex-
treme quality, or that Apple applies
some form of internal code review
process.

Clic
k t

o BUY NOW!PD
F-XChange Editor

w
ww.pdf-xchange.com Clic

k t
o BUY NOW!PD

F-XChange Editor

w
ww.pdf-xchange.com

https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor


PAGE 24 - AUGUST 28, 2024

The paper [16] predicted,
through a statistical
model, with a random
forest algorithm, the
acceptance rates.

This paper states that a de-
veloper that follows a core
contributor has a higher in-
crease in acceptance rate
(187%) and a requester with
many followers has also has
a higher increase (18.1%)

Analyzing open source projects
hosted by GitHub, extracted by the
GHTorrent tool [5] and exported to
the database management system
MySQL to a database. This database
contains 3,200,428 pull requests dis-
tributed in 8,510,504 projects, many
of which use the methodology of
contribution based on pull requests.
Considering the projects that are not
forks, 68 have more than 2,000 reg-
istered pull requests.

The followers of a developer and
whether a developer follows a core
contributor apparently improves the
likelihood of a merge.

This paper [17] states
that Contributor status2

is a dichotomous variable
for the user’s collaborator
status within the project.

This paper [17] says “Per-
haps unsurprisingly, when
submitters with commit ac-
cess choose to create pull
requests instead of directly
merging code, their pull
requests are more likely
to be accepted than non-
collaborators. Being a col-
laborator on a project in-
creases the likelihood of con-
tributions being accepted by
63.6%.”

A dataset was created of pull re-
quests and the users and repositories
associated with each pull request
through sampling for active, collab-
orative projects on GitHub. The
dataset comprises information gath-
ered from the GitHub Application
Programmer Interface (API). In to-
tal, this includes 659,501 pull re-
quests across the 12,482 projects.
For this dataset, information was
gathered about each unique GitHub
user associated with the set of pull
requests. This set of user informa-
tion includes 95,270 unique GitHub
user accounts. The API was also
used to gather information on all is-
sues and comments for each reposi-
tory

This paper present a study on
open source software contribution
in GitHub that focuses on the task
of evaluating pull requests, which
are one of the primary methods for
contributing code in GitHub. The as-
sociation of various technical and
social measures is analyzed with
the likelihood of contribution accep-
tance.

Track
record
of the
developer

By asking 749 inte-
grators through an
anonymized survey [8]
and datamining extracted
PRs through GHTorrent
[5]. Also used in this and
many other papers is this
dataset [27].

The pull-request is not of
high priority, based on the
survey. However, a known
contributor has a higher
chance of acceptance [8]. In
the case of the papers, [18,
19], a contributor’s PRs are
more likely to be accepted
when he has submitted more
PRs previously. Further-
more, a contributor that has
contributed faulty code has
lower file level contribution
than background code own-
ers [61].

A large-scale two-round survey of
749 integrators, split into three logi-
cal sections: demographic informa-
tion, multiple choice or Likert-scale
questions, open-ended questions.

Based on the findings of the survey
the developer’s track record is not
commonly used as a criterion to as-
sess or prioritize contributions by.
“The track record is mostly used as
an auxiliary signal.” [8] “In this pa-
per, they provide preliminary quanti-
tative results showing that a contrib-
utor’s PRs are more likely to be ac-
cepted when he has submitted more
PRs previously.” [18]

2In GitHub, a collaborator for a project has direct commit access to the repository. Therefore, they do not need to perform the
pull request process in order to merge code contributions into the project. However, interviews with GitHub users indicate that many
collaborators opt to create pull requests for code contributions despite having commit status. Often, this is done to allow other users
to review changes before accepting the code contribution.

Clic
k t

o BUY NOW!PD
F-XChange Editor

w
ww.pdf-xchange.com Clic

k t
o BUY NOW!PD

F-XChange Editor

w
ww.pdf-xchange.com

https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor


PAGE 25 - AUGUST 28, 2024

This paper [49] found
the factor by extracted
3000 pull requests events
that were made in the
window from 04/01/2012
to 04/14/2012. After
data sanitization and fil-
tering, this resulted in
2734 usable data points.
Then they ran queries
on GitHub Archive using
Google BigQuery to get
information such as the
number of successful pull
requests and total num-
ber of pull requests made
for each contributor and
repository

This paper says “The track
record of the contributor
plays a role in pull request
acceptance, since it is an in-
dicator of the quality of their
work.”[49] This means that
the bigger the contributions
role of a developer the higher
the acceptance rate of the
pull request will be.

The papers states that the primary
data source or this research was the
GitHub Archive, data that is avail-
able for querying via Google’s Big-
Query. After that Google BigQuery
was used to extract relevant data by
filtering data on related event types.
Once a resulting data has been gen-
erated using Google BigQuery, the
data was exported over to Google
Cloud Storage in Comma Separated
Values (CSV) format, some pre-
processing was done, and the date
was imported into Sqlite3 tables for
easy querying.

Because pull requests are made
from external, unlisted contributors,
there is an element of uncertainty
in whether a pull request will be
accepted. While there are certain
guidelines and factors that may ap-
proximately indicate a successful
pull request, the overall result is not
clear and deterministic. The goal
of this research is to use machine
learning techniques to glean insights
into what contributes to a successful
pull request. If the pull request pre-
diction accurately can be modelled,
men has the e ability to concretely
understand the mechanisms that mo-
tivate successful pull requests, and
use this to improve the collaborative
software engineering process

Geographi-
cal loca-
tion

First, the authors select
geographical locations,
which represent at least
1% of the total pull
requests on GitHub. This
criterion ensures that
they select diverse geo-
graphical locations with
significant pull requests
count for analysis. They
selected United States,
United Kingdom, Ger-
many, France, Canada,
Japan, Brazil, Australia,
Russia, Netherlands,
China, Spain, India,
Switzerland, Sweden,
Italy and Belgium repre-
senting approximately
83% of the contributor
population for analysis.
Secondly, they select
70,740 pull requests
by contributors from
the above-mentioned
17 locations. Lastly,
they measure statistical
significance at a p-value
≤ 0.05.

The paper [9] states that
when contributors and inte-
grators are from the same ge-
ographical location, there is
a higher chance to get pull
requests accepted compared
to when the contributors and
integrators are from different
geographical locations.

A mixed-methods approach is used
and present analyses of 70,000+
pull requests and 2,500+ survey re-
sponses.

The Analyses of 70,000+ pull re-
quests from GitHub projects’ data
shows that geographical location has
a significant influence on the pull re-
quest acceptance rate.

Clic
k t

o BUY NOW!PD
F-XChange Editor

w
ww.pdf-xchange.com Clic

k t
o BUY NOW!PD

F-XChange Editor

w
ww.pdf-xchange.com

https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor


PAGE 26 - AUGUST 28, 2024

The country which devel-
opers reside when they
submit pull requests, as
well as the country of the
integrators. Using the
combined data, the paper
[20] prepares two statis-
tical models: one focus-
ing solely on the country
of the contributor in re-
lationship to pull request
acceptance and one tak-
ing into account whether
the contributor and inte-
grator are in the same .

The outcome is evaluated by
looking at the code contribu-
tion of the developer using
the pull-request acceptance
rate. This paper states that a
developer submitting a pull-
request leads to a higher ac-
ceptance rate if the evalua-
tor of the pull-request origins
from the same country.

An analysis of 70,000+ pull requests
selected was presented from 17 most
actively participating countries to
model the relationship between the
geographical location of developers
and pull request acceptance decision

Countries with no apparent similar-
ities such as Switzerland and Japan
had one of the highest pull request
acceptance rates, while countries
like China and Germany had one of
the lowest pull request acceptance
rates. Notably, higher acceptance
rates were observed when pull re-
quests were evaluated by developers
from the same country. The paper
mirrors what was found by other pa-
pers for this factor.

Level of
participa-
tion

The paper [21] looks at
the Mozilla patch lifecy-
cle to come to its conclu-
sions.

The authors noticed, by com-
paring the lifecycles of core
(> 100 patches) and casual (<
20 patches), that casual con-
tributors have a lower accep-
tance rate and a greater rejec-
tion rate.

In the paper [21] the authors study
the patch lifecycle of the Mozilla
Firefox project [7]. The model of
a patch lifecycle was extracted from
both the qualitative evidence of the
individual processes (interviews and
discussions with developers), and
the quantitative assessment of the
Mozilla process and practice.

“Comparing the lifecycles for core
vs. casual contributors, we noticed
that, in general, casual contributors
have 7% fewer patches that get ac-
cepted or checked into the codebase
and have 6% more patches that get
rejected.” [21]

Expertise
of the
integrator

The paper [23] measures
the factors by interview-
ing nine long-serving
core developers in 5 big
OSS projects. Further-
more they, manually ex-
amined hundreds of re-
views across five high
profile OSS projects.

The code is more likely ac-
cepted if the contribution is
in the expertise of the integra-
tor.

Using theoretical sampling to se-
lect 5 projects and then interviewing
nine core developers from Apache,
SVN, Linux Kernel, Free BSD
and KDE, all of which were long
time contributors to their respective
project. [23]

“Interviewing core developers al-
lowed us to understand why devel-
opers decide to review a particular
patch. We asked, “How do you de-
termine what to review?” All the
interviewees said that they review
patches that are within their area of
interest and expertise that they see
as important contributions.” [23]

The paper [21] looks at
the Mozilla patch lifecy-
cle to come to its conclu-
sions.

Contributions from core de-
velopers are rejected faster.
Contributions from casual de-
velopers are accepted faster.

In the paper [21] the authors study
the patch lifecycle of the Mozilla
Firefox project [7]. The model of
a patch lifecycle was extracted from
both the qualitative evidence of the
individual processes (interviews and
discussions with developers), and
the quantitative assessment of the
Mozilla process and practice.

The reason for this is most probably,
as the authors state, that the contri-
butions from casual developers tend
to be smaller.

The paper [22] per-
formed a social network
analysis of the code
review data from eight
popular OSS projects.

The results suggest that
core developers indeed enjoy
quicker first feed back inter-
vals, shorter review intervals,
and higher code acceptance
rates than the peripheral de-
velopers.

The paper [22] describes that they
developed the Gerrit-Miner tool,
based on this paper [62], that can
mine code review data in a Gerrit
repository, which they used to mine
the eight OSS projects.

A recommendation from the paper:
“We recommend that projects allo-
cate resources or create tool support
to triage the code review requests.”

Clic
k t

o BUY NOW!PD
F-XChange Editor

w
ww.pdf-xchange.com Clic

k t
o BUY NOW!PD

F-XChange Editor

w
ww.pdf-xchange.com

https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor


PAGE 27 - AUGUST 28, 2024

Activeness
of the con-
tributors

The paper [24] gathered
information from 19,543
pull requests, 206,664
comments and 4,817
commenters from 8
popular projects in
GitHub.

Based on the papers [24, 17]
pull requests with many as-
sociated comments are much
less likely to be accepted.
“Uncertain pull requests tend
to require negotiation, and
pull requests with lots of
comments may signal con-
troversy.” [24] Activeness
has a better result and pre-
cision than composite ap-
proaches. This outcome in-
dicates that activeness is the
most important of the four re-
searched/looked at attributes,
thus can be used to better in-
corporate the time spent per
contributor .

They collected 19,543 pull requests,
206,664 comments and 4,817 com-
menters from 8 popular projects in
GitHub and build approaches based
on different attributes, including ac-
tiveness, text similarity, file similar-
ity and social relation. Also compos-
ite approaches were build, includ-
ing time-based text similarity, time-
based file similarity and time-based
social relation.

Do note that this result is based on
8 projects and the author does not
necessarily make a claim that it will
hold for every other project. To the
contrary.

By sending question-
naires to understand
impacts of inactive
assignees.

The paper [25] states that the
the pull-request has a higher
change of staying open and
not being accepted if the re-
viewer of the pull-request is
a inactive developer.

The authors collect 2,374,474
records of activities in 37 popular
projects, and 797,756 records of
activities in 687 projects belonging
to 8 organizations. They compute
the percentage of inactive assignees
in projects, and compare projects
with and without inactive assignees.
Then they analyze datasets to
explore why some assignees are
inactive.

“In GitHub, an issue or a pull re-
quest can be assigned to a spe-
cific assignee who is responsible for
working on this issue or pull request.
Due to the principle of voluntary par-
ticipation, available assignees may
remain inactive in projects. If as-
signees ever participate in projects,
they are active assignees; other-
wise, they are inactive yet avail-
able assignees (inactive assignees
for short). Objective: The objective
in this paper is to provide a com-
prehensive analysis of inactive yet
available assignees in GitHub” [25].

Clic
k t

o BUY NOW!PD
F-XChange Editor

w
ww.pdf-xchange.com Clic

k t
o BUY NOW!PD

F-XChange Editor

w
ww.pdf-xchange.com

https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor


PAGE 28 - AUGUST 28, 2024

Submitter’s
prior inter-
action

Lift of the rule:
first_pull →
status_pull = closed.
Through the analysis
of the Lift, looking at
the chances of rejection
with the association
rule first_pull = true.
The selection of each
factor was governed by
the ability to accurately
calculate its values from
the data (i.e., the authors
[26] did not include a
factor if they could not
collect the corresponding
data, or if a heuristic
was required to compute
it). The outcome is
evaluated by looking at
the code contribution of
the developer using the
pull-request acceptance
rate.

The paper [26] states that a
developer submitting a pull-
request leads to a higher ac-
ceptance rate if the amount
prior submitted pull-request
of a developer increases.
Submitting the first pull re-
quest is a factor that has the
greatest influence in the re-
jection of the contribution.
Also, the more prior interac-
tion the developer has, the
bigger the acceptance rate be-
comes. When the first contri-
bution of a developer occurs
via pull request, the chances
of rejection are 3.38 times
higher.

Adoption of a data mining tech-
nique, more specifically, the extrac-
tion of association rules, in order
to identify new and useful patterns
from pull requests data. Data min-
ing techniques have been employed
in the extraction of knowledge from
software repositories [63, 64]. The
exploratory analysis done through
the ex-traction of association rules
focuses on the discovery of intrinsic
information from data set [26].

Generally, the more prior interaction
the developer has, the bigger the ac-
ceptance rate becomes.

This paper [27] states
the factor selection was
based on prior work in
the areas of patch sub-
mission and acceptance,
code reviewing, bug triag-
ing and also on semi-
structured interviews of
Github developers. This
factor was measure by
“Number of pull requests
submitted by a specific
developer, prior to the ex-
amined one ”

By looking at the results
in paper [27] we can con-
clude that the previous pull
requests and the acceptance
rate do have a strong possi-
tive correlation with the re-
quester his pull request suc-
cess rate, which means that
if the previous pull requests
on a project increases the ac-
ceptance of the pull request
increases.

To understand what the underlying
principles that guide pullbased de-
velopment are, pullreqs was created
pullreqs, a curated dataset of almost
900 projects and 350,000 pull re-
quests, including some of the largest
users of pull requests on Github.

A previous version of the dataset
has been used to quantitatively study
the pull request development pro-
cess. The pullreqs dataset is based
on previous work on GHTorrent, al-
beit only for its construction. While
GHTorrent is a full mirror of all data
offered by the Github API, the pull-
reqs dataset includes many features
extracted by combining GHTorrent
and the project’s repository; the
dataset is offered in a format ready
to be processed by statistical soft-
ware. In this paper, the construction
process of the dataset and outline di-
rections for further research with it
is explained.

Clic
k t

o BUY NOW!PD
F-XChange Editor

w
ww.pdf-xchange.com Clic

k t
o BUY NOW!PD

F-XChange Editor

w
ww.pdf-xchange.com

https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor


PAGE 29 - AUGUST 28, 2024

This paper [17] mea-
sured prior interaction,
by counting the number
of events before a partic-
ular pull request that the
user has participated in
for this project. Events
include participating in
issues, pull requests, and
commenting on various
GitHub artifacts.

This paper [17] says “Prior
interaction was also posi-
tively associated with ac-
ceptance, increasing accep-
tance likelihood by 35.6%
per unit.”

A dataset was created of pull re-
quests and the users and repositories
associated with each pull request
through sampling for active, collab-
orative projects on GitHub. The
dataset comprises information gath-
ered from the GitHub Application
Programmer Interface (API). In to-
tal, this includes 659,501 pull re-
quests across the 12,482 projects.
For this dataset, information was
gathered about each unique GitHub
user associated with the set of pull
requests. This set of user informa-
tion includes 95,270 unique GitHub
user accounts. The API was also
used to gather information on all is-
sues and comments for each reposi-
tory

This paper present a study on
open source software contribution
in GitHub that focuses on the task
of evaluating pull requests, which
are one of the primary methods for
contributing code in GitHub. The as-
sociation of various technical and
social measures is analyzed with
the likelihood of contribution accep-
tance.

Relation
between
contribu-
tors

Propensity to trust3
In particular, the authors
processed the content of
the emails using Tone
Analyzer and obtained
an agreeableness score,
which is defined within
the interval [0, 1]. Values
smaller than 0.5 are as-
sociated with low agree-
ableness and therefore, to
the tendency to be less
compassionate and co-
operative towards others.
Instead, values equal to
or greater than 0.5 are in
general associated with
high agreeableness.

The paper [28] states
that A high agreeable-
ness/propensity to trust leads
to a higher pull request
acceptance rate.

The authors used the GHTor-
rent [5] database to retrieve the
chronologically-ordered list (i.e.,
history) of pull requests opened on
GitHub between March 2015 and
December 2016. For each pull
request, in particular, they stored
the following information (i) the
contributor, (ii) the date when it
was opened, (iii) the status (i.e.,
merged or not), (iv) the integrator
who merged it, if any, and (v) the
date when it was it closed or merged.
Once a mapping was obtained of
the core-team members and their
communication records, the propen-
sity to trust scores from the content
of the entire corpus of their emails
were computed.

“The object of this study was to
make a quantitative analysis on
how the propensity to trust affects
the success of collaborations in a
distributed project, where the suc-
cess is represented by pull requests
whose code changes and contribu-
tions are successfully merged into
the project’s repository.” [28]

3Refers to an individual’s general tendency to perceive the other individuals as trustworthy, agreeableness is used as a proxy
measure of the individual’s propensity to trust.

Clic
k t

o BUY NOW!PD
F-XChange Editor

w
ww.pdf-xchange.com Clic

k t
o BUY NOW!PD

F-XChange Editor

w
ww.pdf-xchange.com

https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor


PAGE 30 - AUGUST 28, 2024

Social distance
This paper [17] states
that this factor was mea-
sured a dichotomous vari-
able indicating whether
or not the submitter fol-
lows the user that closes
the pull request. This
was used as a proxy of
the social closeness be-
tween the submitter and
the closer in a particular
pull request.

This paper [17] says “The
measure of social distance
had the strongest influence
on likelihood of acceptance
as compared with other pull-
request level factors, increas-
ing acceptance by 187%
when the submitter follows
the project manager.”

A dataset was created of pull re-
quests and the users and repositories
associated with each pull request
through sampling for active, collab-
orative projects on GitHub. The
dataset comprises information gath-
ered from the GitHub Application
Programmer Interface (API). In to-
tal, this includes 659,501 pull re-
quests across the 12,482 projects.
For this dataset, information was
gathered about each unique GitHub
user associated with the set of pull
requests. This set of user informa-
tion includes 95,270 unique GitHub
user accounts. The API was also
used to gather information on all is-
sues and comments for each reposi-
tory

This paper present a study on
open source software contribution
in GitHub that focuses on the task
of evaluating pull requests, which
are one of the primary methods for
contributing code in GitHub. The as-
sociation of various technical and
social measures is analyzed with
the likelihood of contribution accep-
tance.

Type of de-
veloper4

The chosen projects were
initially developed by
(and are maintained at)
GitHub, therefore the au-
thors could take advan-
tage of GitHub features
to understand whether a
contributor is a employee
or a volunteer. The pa-
per [29] relied on GitHub
siteadmin flag. This
flag is set to GitHub users
that are GitHub employ-
ees. Therefore, for any
user that does not work
for GitHub, this is set to
false. Consequently, they
used this flag to catego-
rize employees and vol-
unteers in the analyzed
OSS projects, which are
owned by GitHub.

The paper [29] states that in
case of the developer being
a volunteer the rejection rate
of the pull request increases.

In this study, the authors charac-
terize the sample as multiple cases
of company-owned OSS. To de-
fine their sample, they searched
for software companies that have
made some of their software pub-
licly available as OSS. They used
the cloc4 utility to calculate the
Lines of Code (LoC). It includes
code from all the languages in which
a project was developed, as well as
blank lines and commented lines.

“In this early report, we studied
three research questions: (i) Do vol-
unteers have to try more than em-
ployees to have a patch accepted?
(ii) Do volunteers have to wait much
more than employees to have a
patch processed? (iii) Do volunteers
follow contributing best practices?”
[29]

4Volunteer or employee

Clic
k t

o BUY NOW!PD
F-XChange Editor

w
ww.pdf-xchange.com Clic

k t
o BUY NOW!PD

F-XChange Editor

w
ww.pdf-xchange.com

https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor


PAGE 31 - AUGUST 28, 2024

Project

Factor How the factor is mea-
sured

Outcomes How the study is conducted Explanation

Pull re-
quest
system

The paper [30] com-
pared a number of classic
projects that use patch-
based tools and pull-
request-based tools re-
spectively. In particu-
lar, they gather results of
eight mailing-list-based
projects from the pub-
lished studies, and re-
trieve the contribution
history of four GitHub
projects that use pull re-
quest systems and mea-
sure their effectiveness
using published metrics
[30].

This paper [30] “Although
there is a statistically signifi-
cant improvement of accept
rate in the pull request sys-
tem, the practical importance
(odds ratio) is modest in mag-
nitude”, this means that the
acceptance rate of the pull re-
quest increases if for a cer-
tain project a pull request sys-
tem is used. The acceptance
rate increases of the pull re-
quest system as compared
to the issue tracker (mailing-
list-based). The contribu-
tions are processed faster and
more frequently using pull re-
quest systems.

Eight projects using mailing lists are
retrieved from previous two papers.
Four of them using pull request sys-
tems from GitHub. They are Rails,
jQuery, PPSSPP and Rust, represent-
ing different application domains,
scale, and popularity. jQuery is a
small JavaScript library mainly used
for building dynamic web pages,
PPSSPP is a virtual emulator of
Sony Play Station Portable, and Rust
is a programming language which
targets at running fast, preventing
crashes, and eliminating data races.

The results clarify the importance of
understanding the role of tools in ef-
fective management of the broad net-
work of potential contributors and
may lead to strategies and practices
making the code contribution more
satisfying and efficient from both
contributors’ and maintainers’ per-
spectives.

Project
age and
maturity

The paper [10] consid-
ered a timeline of five
plus years from February,
2008 to October, 2013
with one year interval,
and determine the aver-
age number of pull re-
quests made to any sin-
gle base project each
month during each inter-
val. Note that up to
September, 2009, no pull
request are made (i.e., not
recorded in the challenge
dataset), and from Octo-
ber, 2009 to onward, the
pull requests (i.e., both
successful and failed) in-
crease almost exponen-
tially.

The paper says that “More-
over, with the increase in
forked projects, the failure
rate of pull requests increases
especially for the projects
with more than 2,000 forks.”
This means that if the age
and maturity of a project in-
creases the acceptance ratio
decreases.

This paper used the challenge
dataset, and consider the whole se-
quence of conversations associated
with a successful or a failed pull
request as a document, and collect
9,601 conversation documents for
the experiment. But they limited
their study to the 78 base projects
and their forked projects, and also
use other 68,916 pull requests (i.e.,
not containing discussion) for the
experiment. The details were col-
lected of each project (e.g., domain,
programming language, age and ma-
turity) and the corresponding devel-
opers (e.g., number, experience) for
the comparative analysis.

In this research, a comparative study
is conducted between successful
(i.e., merged with base repository)
and unsuccessful (i.e., failed to
merge with base repository) pull re-
quests by analyzing different related
artifacts such as the pull request
discussion texts (i.e., code review
comments), pull request history, and
project and developer specific statis-
tics. The study can provide impor-
tant insights into the success and the
failure of a pull request at GitHub
repositories.

Clic
k t

o BUY NOW!PD
F-XChange Editor

w
ww.pdf-xchange.com Clic

k t
o BUY NOW!PD

F-XChange Editor

w
ww.pdf-xchange.com

https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor


PAGE 32 - AUGUST 28, 2024

This paper [17] measured
a continuous variable rep-
resenting the project’s
age how long a project
has existed on GitHub
since the time of data col-
lection. This was used as
an indicator of the reposi-
tory’s maturity

This paper [17] says “The
older a project, used here as
a proxy for maturity, the less
likely it is to accept pull re-
quests, with acceptance de-
creasing by 18.0% per unit
of project age”

A dataset was created of pull re-
quests and the users and repositories
associated with each pull request
through sampling for active, collab-
orative projects on GitHub. The
dataset comprises information gath-
ered from the GitHub Application
Programmer Interface (API). In to-
tal, this includes 659,501 pull re-
quests across the 12,482 projects.
For this dataset, information was
gathered about each unique GitHub
user associated with the set of pull
requests. This set of user informa-
tion includes 95,270 unique GitHub
user accounts. The API was also
used to gather information on all is-
sues and comments for each reposi-
tory

This paper present a study on
open source software contribution
in GitHub that focuses on the task
of evaluating pull requests, which
are one of the primary methods for
contributing code in GitHub. The as-
sociation of various technical and
social measures is analyzed with
the likelihood of contribution accep-
tance.

Program-
ming
language

The paper [10] found 13
programming languages
used in the 78 GitHub
projects, and found nine
of them having 8-10
projects each. How-
ever, they also select
R language containing
three projects, and dis-
card CSS, Go and Type-
Script from the experi-
ment due to their insignif-
icant number of projects.
The average number of
successful and failed pull
requests for a project
were considered from
each of the programming
languages.

The paper says that “We note
that projects using Scala, C,
C#, R and PHP programming
languages made more suc-
cessful pull requests on aver-
age than failed ones, whereas
projects of JavaScript(JS),
Java, Python, Ruby and C++
did the opposite” This means
that languages like {Scala,
C, C#, R and PHP} have
an increase of the accep-
tance rate and languages like
{JavaScript(JS), Java, Python,
Ruby and C++} have a de-
crease of the acceptance rate

This paper used the challenge
dataset, and consider the whole se-
quence of conversations associated
with a successful or a failed pull
request as a document, and collect
9,601 conversation documents for
the experiment. But they limited
their study to the 78 base projects
and their forked projects, and also
use other 68,916 pull requests (i.e.,
not containing discussion) for the
experiment. The details were col-
lected of each project (e.g., domain,
programming language, age and ma-
turity) and the corresponding devel-
opers (e.g., number, experience) for
the comparative analysis.

In this research, a comparative study
is conducted between successful
(i.e., merged with base repository)
and unsuccessful (i.e., failed to
merge with base repository) pull re-
quests by analyzing different related
artifacts such as the pull request
discussion texts (i.e., code review
comments), pull request history, and
project and developer specific statis-
tics. The study can provide impor-
tant insights into the success and the
failure of a pull request at GitHub
repositories.

Clic
k t

o BUY NOW!PD
F-XChange Editor

w
ww.pdf-xchange.com Clic

k t
o BUY NOW!PD

F-XChange Editor

w
ww.pdf-xchange.com

https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor


PAGE 33 - AUGUST 28, 2024

The data set used in
the experiment com-
prises of 61,592 pull
requests made on 72
different projects. The
attributes considered in
the analysis are: project
id (project identifier);
language (programming
language); developer
type (main team or exter-
nal); first pull (informs
if the pull request is
the first made by the
requester); commits pull
(amount of commits per
pull request); files added
(amount of files added);
file edited (amount
of files edited); files
removed (amount of
files removed); files
changed (amount of
files added, moved, and
edited); analysis time
(time required to analyze
the pull request); status
pull (pull request final
status). The value of the
last attribute determines
whether the pull request
is accepted (merged) or
rejected (closed).

This paper [31] says that
“Pull requests written in pro-
gramming languages like
Java, CSS, JavaScript, and
C++, have the merge chances
reduced, whereas C#, C,
TypeScript (few projects),
Scala, and Go (few projects)
increase the chances of oc-
currence of a merge.”

This paper used an adoption of a
data mining technique, more specif-
ically, the extraction of association
rules, in order to identify new and
useful patterns from pull requests
data. Data mining techniques have
been employed in the extraction of
knowledge from software reposito-
ries [63, 64]. The exploratory anal-
ysis done through the ex-traction of
association rules focuses on the dis-
covery of intrinsic information from
data set.

The work of the researchers pro-
poses an exploratory study on pull
requests through data mining. More
specifically, they extract association
rules, aiming at discovering relation-
ship among features of pull requests
obtained from GitHub. In this sec-
tion, they detail the materials and
methods used in this experiment.

Number of
develop-
ers

The paper [10] collected
the information of 20,142
developers involved into
78 base projects, whose
working experience
varies from five months
to 68 months.

The paper says that “how-
ever, the projects with a
large developer crowd may
make an excessive number of
unsuccessful pull requests.”
This means that if the num-
ber of developers on a project
increases the rejection rate
probably increases. One can
also derive this from the fol-
lowing quote: “the rate of
unsuccessful pull requests
increases exponentially (for
one project) with more than
4000 developers involved.”

This paper used the challenge
dataset, and consider the whole se-
quence of conversations associated
with a successful or a failed pull
request as a document, and collect
9,601 conversation documents for
the experiment. But they limited
their study to the 78 base projects
and their forked projects, and also
use other 68,916 pull requests (i.e.,
not containing discussion) for the
experiment. The details were col-
lected of each project (e.g., domain,
programming language, age and ma-
turity) and the corresponding devel-
opers (e.g., number, experience) for
the comparative analysis.

In this research, a comparative study
is conducted between successful
(i.e., merged with base repository)
and unsuccessful (i.e., failed to
merge with base repository) pull re-
quests by analyzing different related
artifacts such as the pull request
discussion texts (i.e., code review
comments), pull request history, and
project and developer specific statis-
tics. The study can provide impor-
tant insights into the success and the
failure of a pull request at GitHub
repositories.

Clic
k t

o BUY NOW!PD
F-XChange Editor

w
ww.pdf-xchange.com Clic

k t
o BUY NOW!PD

F-XChange Editor

w
ww.pdf-xchange.com

https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor


PAGE 34 - AUGUST 28, 2024

First, the authors of
the paper [65] extends
three typical approaches
used in bug triaging
and code review for
the new challenge of
assigning reviewers to
pull-requests. Second,
they analyze social rela-
tions between contribu-
tors and reviewers, and
propose a novel approach
by mining each project’s
comment networks(CNs).
Finally, they combine
the CNs with traditional
approaches, and eval-
uate the effectiveness
of all these methods
on 84 GitHub projects
through both quantitative
and qualitative analysis.

This paper states that the
most prominent factor for the
acceptance rate is the forks,
stars and watches (i.e. the
size of the contributors).

Evaluate the performances of the in-
tegrators on 84 projects of GitHub
using precision, recall and F-
Measure.

Social coding on Github, with
the high volume of incoming pull-
requests, poses a new challenge for
integrators. With greater efficiency
of the integrator’s time, They can
infer a higher merge rate could be
achieved.

This paper [27] states
the factor selection was
based on prior work in
the areas of patch sub-
mission and acceptance,
code reviewing, bug triag-
ing and also on semi-
structured interviews of
Github developers. This
factor was measure by
“Number of active core
team members during the
last 3 months prior to
creation (of the pull re-
quest).”

By looking at the results in
paper [27] we can conclude
that the size of the team and
the acceptance rate do have a
medium negative correlation
with the requester his pull
request success rate, which
means that if the size of the
team on a project increases
the acceptance of the pull re-
quest decreases.

To understand what the underlying
principles that guide pullbased de-
velopment are, pullreqs was created
pullreqs, a curated dataset of almost
900 projects and 350,000 pull re-
quests, including some of the largest
users of pull requests on Github.

A previous version of the dataset has
been used to quantitatively study the
pull request development process.
The pullreqs dataset is based on the
previous work on GHTorrent, albeit
only for its construction. While
GHTorrent is a full mirror of all data
offered by the Github API, the pull-
reqs dataset includes many features
extracted by combining GHTorrent
and the project’s repository; the data-
set is offered in a format ready to
be processed by statistical software.
In this paper, the construction pro-
cess of the data-set and outline di-
rections for further research with it
is explained.

Clic
k t

o BUY NOW!PD
F-XChange Editor

w
ww.pdf-xchange.com Clic

k t
o BUY NOW!PD

F-XChange Editor

w
ww.pdf-xchange.com

https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor


PAGE 35 - AUGUST 28, 2024

This paper [17] measured
the number of collabora-
tors on a project. The
number of collaborators
is used as a proxy for
the relative size of the de-
velopment team involved
in a particular GitHub
project.

This paper [17] says “Num-
ber of collaborators, used as
a proxy for project team size,
has the smallest influence on
acceptance likelihood out of
the three establishment mea-
sures, decreasing acceptance
by 4.6% per unit of collabo-
rator count. ”

A dataset was created of pull re-
quests and the users and repositories
associated with each pull request
through sampling for active, collab-
orative projects on GitHub. The
dataset comprises information gath-
ered from the GitHub Application
Programmer Interface (API). In to-
tal, this includes 659,501 pull re-
quests across the 12,482 projects.
For this dataset, information was
gathered about each unique GitHub
user associated with the set of pull
requests. This set of user informa-
tion includes 95,270 unique GitHub
user accounts. The API was also
used to gather information on all is-
sues and comments for each reposi-
tory

This paper present a study on
open source software contribution
in GitHub that focuses on the task
of evaluating pull requests, which
are one of the primary methods for
contributing code in GitHub. The as-
sociation of various technical and
social measures is analyzed with
the likelihood of contribution accep-
tance.

Popularity
of project

This paper [27] states
the factor selection was
based on prior work in
the areas of patch sub-
mission and acceptance,
code reviewing, bug triag-
ing and also on semi-
structured interviews of
Github developers. This
factor was measure by
“Project watchers (stars)
at creation”

By looking at the results in
paper [27] we can conclude
that the number of watchers
and the acceptance rate do
have a medium negative cor-
relation with the requester
his pull request success rate,
which means that if the num-
ber of watchers on a project
increases the acceptance of
the pull request decreases.

To understand what the underlying
principles that guide pullbased de-
velopment are, pullreqs was created
pullreqs, a curated dataset of almost
900 projects and 350,000 pull re-
quests, including some of the largest
users of pull requests on Github.

A previous version of the dataset
has been used to quantitatively study
the pull request development pro-
cess. The pullreqs dataset is based
on the previous work on GHTor-
rent, albeit only for its construction.
While GHTorrent is a full mirror
of all data offered by the Github
API, the pullreqs dataset includes
many features extracted by com-
bining GHTorrent and the project’s
repository; the dataset is offered in a
format ready to be processed by sta-
tistical software. In this paper, the
construction process of the dataset
and outline directions for further re-
search with it is explained.

This paper [17] measured
by the number of follow-
ers a GitHub user has at
time of data collection

This paper [17] says “Having
followers increases the likeli-
hood of acceptance by 18.1%
per unit of followers. This
suggests that submitters with
higher community standing
are more likely to have their
pull requests accepted” This
means that if the number of
followers increases the ac-
ceptance rate increases.

A dataset was created of pull re-
quests and the users and repositories
associated with each pull request
through sampling for active, collab-
orative projects on GitHub. The
dataset comprises information gath-
ered from the GitHub Application
Programmer Interface (API). In to-
tal, this includes 659,501 pull re-
quests across the 12,482 projects.
For this dataset, information was
gathered about each unique GitHub
user associated with the set of pull
requests. This set of user informa-
tion includes 95,270 unique GitHub
user accounts. The API was also
used to gather information on all is-
sues and comments for each reposi-
tory

This paper present a study on
open source software contribution
in GitHub that focuses on the task
of evaluating pull requests, which
are one of the primary methods for
contributing code in GitHub. The as-
sociation of various technical and
social measures is analyzed with
the likelihood of contribution accep-
tance.

Clic
k t

o BUY NOW!PD
F-XChange Editor

w
ww.pdf-xchange.com Clic

k t
o BUY NOW!PD

F-XChange Editor

w
ww.pdf-xchange.com

https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor


PAGE 36 - AUGUST 28, 2024

This paper [17] measured
a continuous variable for
the number of stars on
a project. When eval-
uating projects, GitHub
users make use of the
number of stars as a sig-
nal for community inter-
est in the project.

This paper [17] says “Popu-
larity had the strongest neg-
ative influence on accep-
tance, with projects 35.2%
less likely to accept pull re-
quests per unit of increase in
stars”

A dataset was created of pull re-
quests and the users and repositories
associated with each pull request
through sampling for active, collab-
orative projects on GitHub. The
dataset comprises information gath-
ered from the GitHub Application
Programmer Interface (API). In to-
tal, this includes 659,501 pull re-
quests across the 12,482 projects.
For this dataset, information was
gathered about each unique GitHub
user associated with the set of pull
requests. This set of user informa-
tion includes 95,270 unique GitHub
user accounts. The API was also
used to gather information on all is-
sues and comments for each reposi-
tory

This paper present a study on
open source software contribution
in GitHub that focuses on the task
of evaluating pull requests, which
are one of the primary methods for
contributing code in GitHub. The as-
sociation of various technical and
social measures is analyzed with
the likelihood of contribution accep-
tance.

Clic
k t

o BUY NOW!PD
F-XChange Editor

w
ww.pdf-xchange.com Clic

k t
o BUY NOW!PD

F-XChange Editor

w
ww.pdf-xchange.com

https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor


PAGE 37 - AUGUST 28, 2024

Process

Factor How the factor is mea-
sured

Outcomes How the study is conducted Explanation

Number of
comments
(on pull-
request)

Outcome is evaluated by
looking at code contribu-
tions of the developer us-
ing the pull-request ac-
ceptance rate. [17, 13]
Calculated from a col-
lected and preprocessed
dataset of PR’s [32]
The paper [10] collected
for each topic, the
frequency of the pull re-
quests was collected (i.e.,
discussion documents)
and the information
regarding their successes
and failures.
the paper[66] identifies
candidate non-forked
projects that received at
least 1000 pull requests
in total, select, from
among these, the top
ten projects (ranked by
number of pull requests)
for each programming
language.

Contribution is more likely
to be accepted if it has a more
comments.[13, 32]
Contributions with more
comments are less likely to
be accepted [17, 10, 66]

This paper[17] created a statistical
model analyzing the association of
different pull request, submitter, and
repository measures of contributions
with the likelihood of the contribu-
tion being accepted.
This paper [32] created models that
tried to capture the relationship be-
tween explanatory variables as well
as conducted a survey
This paper[13] cross links and an-
alyzes eight years of patch re-
views from the kernel mailing lists
and committed patches from the
Git repository to understand which
patches are accepted and how long
it takes those patches to get to the
end user.
This paper[10] used the challenge
dataset, and consider the whole se-
quence of conversations associated
with a successful or a failed pull
request as a document, and collect
9,601 conversation documents for
the experiment. But they limited
their study to the 78 base projects
and their forked projects, and also
use other 68,916 pull requests (i.e.,
not containing discussion) for the
experiment. The details were col-
lected of each project (e.g., domain,
programming language, age and ma-
turity) and the corresponding devel-
opers (e.g., number, experience) for
the comparative analysis.
This paper[66] composes a sample
of GitHub projects that make heavy
use of pull requests and CI. They
only consider projects using Travis-
CI.

"The third and fourth most impor-
tant metrics are related to patch ma-
turity, i.e., the amount of reviewing
discussion preceding a patch sub-
mission and the number of previous
iterations of the patch in the same
thread. Unsurprisingly, the more ma-
ture a patch, the higher the probabil-
ity of acceptance.[13]
In this research[10], a comparative
study is conducted between success-
ful (i.e., merged with base reposi-
tory) and unsuccessful (i.e., failed
to merge with base repository) pull
requests by analyzing different re-
lated artifacts such as the pull re-
quest discussion texts (i.e., code re-
view comments), pull request his-
tory, and project and developer spe-
cific statistics. The study can pro-
vide important insights into the suc-
cess and the failure of a pull request
at GitHub repositories.

Type of
comments
(on pull-
request)

Comments were classi-
fied as being negative,
neutral, or positive

This paper [33] states that
of positive comments af-
fects the pull request accep-
tance likelihood positively,
whereas the percentage of
negative comments affects
negatively.

From a set of 24 million pull re-
quest collected, pull requests who
had at least five comments were se-
lected. They classified the com-
ments retrieved from the Github API
as having negative, neutral, or posi-
tive with their state of the art model.

-

Clic
k t

o BUY NOW!PD
F-XChange Editor

w
ww.pdf-xchange.com Clic

k t
o BUY NOW!PD

F-XChange Editor

w
ww.pdf-xchange.com

https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor


PAGE 38 - AUGUST 28, 2024

Difficulty
of git (i.e.
the usage
/ com-
mands)

The study[34] conducted
a large-scale survey in
order to investigate a
large number of develop-
ers from a wide range of
beginner to expert.

Developers feels GitHub
and pull request more user-
friendly than Git. From fur-
ther examination, the incon-
sistency of Git commands
and options and undo/redo
Git commands are the influ-
ence factors of difficulties to
developers. [34]

A large-scale survey in order to in-
vestigate a large number of develop-
ers from a wide range of beginner to
expert. An overview of the 1,552
respondents (11.8% answer rate):
Most of the respondents work for in-
dustries (74%) and have more than
6years of development experience
(82%). For VCS experience,the per-
centage was mostly same among 1-
5, 6-10 and more than 10 years. On
the other hand, the majority of ex-
perience in Git and GitHub was 3-5
years (58% and 61%).

This study was only conducted us-
ing git and not other version control
systems.

Conforma-
tion to the
projects
coding
standard

This paper[35] analyzed
and compared the docu-
mentation that describes
their patch contribution
processes to identify key
process components.

A contribution is more likely
to be accepted if it adheres
the coding practices of the
project itself [35]

The study is conducted by review-
ing the processes of a wide range of
OSS projects, which are among the
most popular active projects from
the ohloh.net website in 2010

Coding standards make it so the
project does not become bloated
with different coding standards,
making it harder to maintain. The
study focused on how to man-
age contribution to an open source
project in order to make the project
sustainable.

Reopened
Pull
request

This paper[36] used
The Mann-Wilcoxon-
Whitney Test to show
differences in the eval-
uation time between
non-reopened and
reopened pull requests

This paper[36] states that
reopened pull requests have
lower acceptance rates,
than non-reopened pull
requests.[36]

Composed a dataset of pullrequest
with the help of GHTorrent[5] and
processed data out of that

-

Continuous
Integra-
tion

This study [37]
look based on the
PR_merged and
CI_Failure metric and
looked at the acceptance
rate. This study[38] ran
a SQL query to find
ratio of total number
of pull requests, to the
pull requests that were
merged. They also ran
SQL queries on the
build history of pull
request group’s projects
which they collected
from Travis CI before.
This study[39] looked
at Merged_PR and
Rejected_PR and see
how proj_age correlates
to those. This paper[40]
looked at the acceptance
rate of PRs

This paper[37] states that the
availability of the CI pipeline
may hasten the evaluation
process. This paper[38]
states that Pull request that
had a Travis CI build had
slightly higher merge rate.
This paper[39] states: as
observed earlier, the over-
all number of pull requests
managed (both merged and
rejected) increases after CI.
This paper[40] states that PR
opened with passed CI builds
have 1.5 more chances of be-
ing merged than those failing.
Such chances increase up to
1.72 if the build passes at the
end of the PR discussion.

This study [37] composed a sample
of GitHub projects that make heavy
use of pull requests and CI. In this
preliminary study they only consider
projects using Travis-CI .
The study[38] wanted to find how
many of pull requests were accepted.
They also want to evaluate whether
other factors such as availability of
automated builds influenced accep-
tance rates. Finally, they examined
the targeted developer survey to un-
derstand how developers perceived
the effectiveness of greenkeeper.io.
From GHTorrent[5] dump dated 10-
11-2014, they looked at projects ex-
ceeding 200 pull requests written in
the most popular languages, which
resulted in 1884 projects in total.
[39]
They analyze the process ofPR re-
viewing in 69 open source projects
hosted on GitHub and using Travis-
CI as CI infrastructure.[40]

“The general literature on CI sug-
gests that the continuous application
of quality control checks speeds up
overall development, and ultimately
improves software quality.” This
paper indicates that prediction to
be valid. “To learn whether depen-
dency management tools help devel-
oper—and if they do, to what ex-
tent—we extracted data from five
sources: (i) GitHub’s public dataset
on Google BigQuery, which is the
complete content of public reposito-
ries on GitHub; (ii) GitHub Archive
dataset on Google BigQuery, which
is a project that collects all the pub-
lic events on GitHub; (iii) Travis-
CI API; (iv) GitHub API; and (v)
Git history of public projects on
GitHub.”

Clic
k t

o BUY NOW!PD
F-XChange Editor

w
ww.pdf-xchange.com Clic

k t
o BUY NOW!PD

F-XChange Editor

w
ww.pdf-xchange.com

https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor


PAGE 39 - AUGUST 28, 2024

Automation The study[41] measured
by examining several
metrics(including ac-
cepted and rejected PR’s)
across the 44 selected
projects for six consecu-
tive months before and
after the first adoption of
a bot

This paper [41] states they
could not find any consis-
tent statistically significant
results across the analyzed
projects

This study[41] selected OSS project
on GitHub (excluding non-software
projects, such as textbooks or book-
marks) that received at least 2.5k
stars before August 2017,To iden-
tify the bot, a GitHub account was
verified and its name and descrip-
tion were analyzed for bot refer-
ences. To enable comparison, only
those projects that had been active
for at least six months before and
six months after the bot adoption re-
tained in the data set.

“We aimed to understand how com-
monly OSS projects use bots and
what they use them for by manu-
ally analyzing a subset of the most
starred projects from GitHub, Then
we want to understand whether the
acceptance rate, interaction, and
decision-making time of a project
change after the bot adoption. At
last we are trying to understand:
(1) whether stakeholders perceive
the presence of bots on pull request
that they submit/merge; (2) whether
stakeholders agree about the rele-
vance of bot support on software
tasks; (3) problems/challenges of us-
ing bots; and (4) missing features.”

Age of
the pull
request

This study[42] measures
the factor by asking 749
integrators through an
anonymized survey.
This paper [67] sought
to understand the stu-
dents’ work practices in
the pull-based model and
analyzed the PR data in
TRUSTIE to learn the
PRs’ intentions and their
handling time for merg-
ing. Besides, they col-
lected the students’ re-
sponse in the question-
naire to understand their
collaboration practices in
the process.

The pull-request is less likely
to be accepted the longer the
age. [42]
This paper [67] says “Be-
sides, they tend to notify the
group leaderafter submitting
PRs, and the group leaders
tend to accept PRs in ashort
time span, with few code re-
views.” Which means that if
the the age of the pull request
increases the acceptance rate
of the pull request decreases.

This study[42] used a large-scale
two-round survey of 749 integra-
tors, split into three logical sections:
demographic information, multiple
choice or Likert-scale questions,
open-ended questions.

“By age of the pull-request, I mean
the total minutes between open and
the current time window start time.”

Social and
technical
aspects

This study[43] measured
the factor by fixation
count with the use of an
eye-tracker.

This study[43]. observed
that both social and technical
aspects are being taken into
consideration when deciding
upon pull request acceptance.
Moreover, they observe that
many more social aspects are
being considered during the
experiment than reported dur-
ing the post-experiment sur-
vey.

This study[43] conducted an eye-
tracking experiment with 42 partici-
pants to obtain a more granular un-
derstanding of which of pull request
elements are considered.

The results are mainly shown
through a table, thus check the dif-
ferences between code signals, tech-
nical signals and social signals in it.
Generally, it appears that more so-
cial aspects / signals are considered
than let on in surveys. Do note that
42 participants are not that many,
though.

Prioriti-
zation of
work

By surveying 750 in-
tegrators through an
anonymized survey. [42]

The main problems when
working with pull requests
is maintaining project quality
and prioritization [44, 42].

A large-scale two-round survey of
750 integrators, split into three logi-
cal sections: demographic informa-
tion, multiple choice or Likert-scale
questions, open-ended questions.

The paper [44] mentions a potential
implementation (PRioritizer) of the
previous results of their paper that
was conducted [42].

Clic
k t

o BUY NOW!PD
F-XChange Editor

w
ww.pdf-xchange.com Clic

k t
o BUY NOW!PD

F-XChange Editor

w
ww.pdf-xchange.com

https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor


PAGE 40 - AUGUST 28, 2024

Code

Factor How the factor is mea-
sured

Outcomes How the study is conducted Explanation

Comments
on source
code

This paper [32] created
models that tried to cap-
ture the relationship be-
tween explanatory vari-
ables as well as con-
ducted a survey

This paper states that a an
increase in comments in the
source code increases the
pull-request acceptance rate
[32]

Created a statistical model analyzing
the association of different pull re-
quest, submitter, and repository mea-
sures of contributions with the like-
lihood of the contribution being ac-
cepted

“The higher number of developers
commenting on a PR leads to a
lower chance being approved, while
the number of developers leaving
comments on the source code is
likely to increase the chance of a PR
being accepted and merged.”[32]

Number of
blank lines

Fifty factors from the re-
lated works used in this
study include not only
the pull request or code
review on GitHub but
also code quality metrics.
The relationship of these
factors are examined by
using association rules.
[48]

This paper[48] outcome is
evaluated by looking at code
contributions of the devel-
oper using the pull-request
acceptance rate. This paper
states that a an increase in
blank lines on the source de-
creases the pull-request ac-
ceptance rate

In this study[48], open source
projects on GitHub are selected
since they are the most world’s
largest open source communities.
Ansible3 is selected to be the open
source project because it is the
fourth on the list and it has a signifi-
cant process. There are around 5.9K
contributors in Ansible, which is the
tenth most-discussed repository

More than 90% of all pull requests
are rejected when requesting for a
permission at the first time due to
many reasons such as the pull re-
quests require further information,
the pull requests have an incom-
plete description, etc. For these rea-
sons, the rejected pull requests are
selected to analyze which aim at
finding impact factors for rejection
of pull requests.

Number of
changed
lines

This paper [49] found
the factor by extracted
3000 pull requests events
that were made in the
window from 04/01/2012
to 04/14/2012. After
data sanitization and fil-
tering, this resulted in
2734 usable data points.
Then they ran queries
on GitHub Archive using
Google BigQuery to get
information such as the
number of successful pull
requests and total num-
ber of pull requests made
for each contributor and
repository

This paper says “Changes to
code should be succinct; hav-
ing too many lines changed
reduces the chance of accep-
tance” [49], which means
that an increase in changes
lines of code, leads to a de-
crease in acceptance rate.

The papers states that the primary
data source or this research was the
GitHub Archive, data that is avail-
able for querying via Google’s Big-
Query. After that Google BigQuery
was used to extract relevant data by
filtering data on related event types.
Once a resulting data has been gen-
erated using Google BigQuery, the
data was exported over to Google
Cloud Storage in Comma Separated
Values (CSV) format, some pre-
processing was done, and the date
was imported into Sqlite3 tables for
easy querying.

Because pull requests are made
from external, unlisted contributors,
there is an element of uncertainty
in whether a pull request will be
accepted. While there are certain
guidelines and factors that may ap-
proximately indicate a successful
pull request, the overall result is not
clear and deterministic. The goal
of this research is to use machine
learning techniques to glean insights
into what contributes to a successful
pull request. If the pull request pre-
diction accurately can be modelled,
men has the e ability to concretely
understand the mechanisms that mo-
tivate successful pull requests, and
use this to improve the collaborative
software engineering process

Clic
k t

o BUY NOW!PD
F-XChange Editor

w
ww.pdf-xchange.com Clic

k t
o BUY NOW!PD

F-XChange Editor

w
ww.pdf-xchange.com

https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor


PAGE 41 - AUGUST 28, 2024

This paper [50] identi-
fied ten recent pull re-
quests interviewees had
received from contribu-
tors they had not directly
interacted with before.
These pull request inter-
actions varied in terms of
whether or not the project
owner looked at the pro-
file of the contributor, the
nature of the code being
submitted, the perceived
expertise of the contribu-
tor, the amount of discus-
sion surrounding the pull
request Larger changes
are introducing a new fea-
ture, or conflicting with
other existing functional-
ity.

The papers says that “Own-
ers were more certain about
the value of simple changes
that addressed features the
owner had wanted to add,
were small in scope, or fixed
a known bug. Owners were
less uncertain about the value
of code that was suggest-
ing a larger change, introduc-
ing a new feature, or con-
flicting with other existing
functionality.”, This means
that changes that are small
in scope(small number of
lines) do increase the accep-
tance rate of a pull request
and changes that are big in
scope(big number of lines)
do decrease the acceptance
rate of a pull request.

This paper conducted interviews
with 18 GitHub users focusing in
detail on how they formed impres-
sions of new people they encoun-
tered on the site. Using information
obtained through the GitHub API,
GitHub users who owned at least
one open source project were identi-
fied. Potential interviewees who had
publicly-displayed e-mail addresses
available on their personal profiles
were contacted to see if they would
like to participate in the study.

The goal in this work was to develop
a more detailed understanding of im-
pression formation in online peer
production. The researchers build
on the distributed social cognition
model, which posits that impression
formation is an active process influ-
enced by behavior in a network or
group. This model shows that when
forming impressions of others, indi-
viduals engage in an active process
that involves the following steps: 1)
choosing whether to obtain infor-
mation about the target; 2) choos-
ing what information is elicited, and
3) interpreting the elicited informa-
tion to form a person model (an in-
tegrated interpretation of what a per-
son is like.) The distributed social
cognition model provides general
guidelines about how impression for-
mation occurs but doesn’t describe
what the process looks like in a spe-
cific setting.

This paper [32] states
that previous research
suggests a set of differ-
ent metrics that can af-
fect code review time and
outcome [68, 1]. The
selection of each factor
was governed by the abil-
ity to accurately calculate
its values from the data
(i.e., we did not include
a factor if we could not
collect the corresponding
data, or if a heuristic was
required to compute it).

This paper [32] “the PR size
metric is included in the fi-
nal model for review out-
come (i.e., merge decision).
Its negative regression coef-
ficient indicates that larger
PRs are more likely to re-
ceive a negative merge deci-
sion (i.e., a PR is not merged)
than smaller ones.”, which
means that the number of
lines of code does decrease
the acceptance rate of a pull
request. [32]

To understand developers’ work
practices and their vision of the PR
review process used in the project,
the researches conducted a survey.
The survey contained three groups
of questions: nine questions re-
lated to the demographic informa-
tion about participants and their
work practices, three Likert-scale
questions focused on PR review, and
four open-ended questions asked
participants to provide more infor-
mation concerning their responses
to the Likert-scale questions. Partic-
ipants were informed that the survey
would take 10–15 minutes to com-
plete.

The goal of the study was built
around a quantitative analysis of the
Active Merchant project repository,
as well as an exploratory survey that
we conducted with Shopify develop-
ers

Clic
k t

o BUY NOW!PD
F-XChange Editor

w
ww.pdf-xchange.com Clic

k t
o BUY NOW!PD

F-XChange Editor

w
ww.pdf-xchange.com

https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor


PAGE 42 - AUGUST 28, 2024

This paper [48] found
fifty factors from the re-
lated works used in this
study include not only
the pull request or code
review on GitHub but
also code quality met-
rics. The relationship of
these factors are exam-
ined by using association
rules.[48]

This paper state that from
the rules that they created,
which present the transac-
tions probability that having
this pattern, C present the
confidence value of each rule,
L present the lift vale of each
rule, that Rule1 - Rule7 have
a confidence value equal to
one, which means that if
the patterns from Rule1 -
Rule7 occurred in pull re-
quests, the pull requests are
definitely rejected (100%).
Rule 8 - Rule10 have a con-
fidence value equal to 0.99,
which means that if the pat-
terns from Rule8 - Rule10
occurred in pull requests,
the pull requests are rejected
99[48]

The first dataset gives all labels val-
ues in "Yes" and "No" flags to iden-
tify the labels used in the pull re-
quest. If the flag is "Yes", the label
is used in the pull requests. If not, it
is not used in the pull request. Due
to the huge amounts of "No" flag in
the first dataset, some related labels
are merged in the second dataset.
The factors meanings are the related
labels merging keys. After merg-
ing the related labels, there are only
five label groups in the represen-
tative labels: community, specific
needs, new submitting transaction,
review type, and pull request type.
r.1) code chunk -> file changed r.2)
code chunk and blank line count ->
file changed r.3) changes count and
multi-line count -> code chunk r.4)
file changes count, muti-line count
and no community label -> blank
line count r.5) code chunk -> blank
line count r.6) file changes count,
code chunk -> blank line count r.7)
code chunk -> file changes count
r.8) file changes count, lines of code
changed count -> blank line count
r.9) file changes count -> blank line
count r.10) file changes count, no
community -> blank line count

The main contribution of this work
is to provide a method to find the im-
pact factors on the pull requests and
also the relationships among impact
factors.

The researchers of this
paper devised an algo-
rithm to analyze the por-
tion patch acceptance
concerning only source-
code patches. Evaluat-
ing this proposed algo-
rithm, they develop a
method to extract patches
from mailing list and
Bugzilla. Mailing list is
usually used for verifying
patches, and Bugzilla is
for tracking bugs. They
are the common channels
that developers discuss
about patching. After
they extracted all patches,
the percentage of the ac-
ceptance in both fully
accepted and partial ac-
cepted cases.

This paper [69] says that
“Our results concluded the
contradictory that the lager
patches have more accep-
tance rate.” This concludes
that lager pull request are do
decrease the acceptance rate.

This paper [69] decided to study
on two systems, Mailing list and
Bugzilla, which are totally differ-
ent. There are several recently
proposed methodologies for extract-
ing patches from mailing list [70],
[71]. They choose to improvise
and extend the Weissgerber et al.’s
proposed [72] . Which proposed
method is straightforward that is the
most suitable for us since improving
a method to extract patches from an
email is out the scope.

Clic
k t

o BUY NOW!PD
F-XChange Editor

w
ww.pdf-xchange.com Clic

k t
o BUY NOW!PD

F-XChange Editor

w
ww.pdf-xchange.com

https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor


PAGE 43 - AUGUST 28, 2024

This paper [17] states
that commit size was
measured by the number
of lines changed in the
pull request.

This paper [17] says “Lines
changed had a stronger effect
but negative, with each unit
of lines changed decreasing
the chance of acceptance by
26.2%”

A dataset was created of pull re-
quests and the users and repositories
associated with each pull request
through sampling for active, collab-
orative projects on GitHub. The
dataset comprises information gath-
ered from the GitHub Application
Programmer Interface (API). In to-
tal, this includes 659,501 pull re-
quests across the 12,482 projects.
For this dataset, information was
gathered about each unique GitHub
user associated with the set of pull
requests. This set of user informa-
tion includes 95,270 unique GitHub
user accounts. The API was also
used to gather information on all is-
sues and comments for each reposi-
tory

This paper present a study on
open source software contribution
in GitHub that focuses on the task
of evaluating pull requests, which
are one of the primary methods for
contributing code in GitHub. The as-
sociation of various technical and
social measures is analyzed with
the likelihood of contribution accep-
tance.

Code style This paper [52] measured
the factor by a two-step
approach to calculate the
code style inconsistency
for each PR. First, the
inconsistency of code
styles between each
pair of the original
version and the modified
version of one file. The
inconsistency for each
pair is defined as fol-
lows: eachinconsistency

(soriginal, smodified) =
soriginal XOR
smodified. Code
style inconsistency
for a PR, was only
calculated by looking
by considering the files
that were modified by
the PR. Newly added
files that did not have
corresponding original
files were ignored during
calculation.

This paper [52] found that
the code style inconsistency
of pull requests had a small
negative effect on the deci-
sion of merging pull-requests
(Acceptance ratio). This
meant that a pull request with
larger code style inconsis-
tency was more likely to be
rejected.

This paper [52] experimental pro-
cess included four parts. First,
the selected relevant projects from
GitHub as the experimental sub-
jects. Secondly, 37 code style cri-
teria based on literature to charac-
terize the code style of pull request
were defined. Thirdly, the code style
inconsistency was calculated based
on the above criteria. Last, the effect
of code style on integrating pull re-
quests was explored via answering
four Research Questions

In RQ1(Is there any difference be-
tween the code style of submitted
PRs and that of the existing source
code?), A general statistics is given
on the code style inconsistency be-
tween submitted PRs and existing
code. In RQ2(Which code style cri-
teria tend to show much inconsis-
tency among PRs?), the code style
was further analyzed and answered
which criteria contributed most to
the above inconsistency. In the
follow-up RQ3(How does code style
affect the merging of PRs?) and
RQ4(How does code style affect the
closing time of PRs?), the regression
models were leveled to measure the
effect of code style inconsistency on
PR integration, including the deci-
sion of merging PRs and the time
cost of closing PRs

Clic
k t

o BUY NOW!PD
F-XChange Editor

w
ww.pdf-xchange.com Clic

k t
o BUY NOW!PD

F-XChange Editor

w
ww.pdf-xchange.com

https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor


PAGE 44 - AUGUST 28, 2024

Number of
tests

The feature selection was
based on prior work
in the areas of patch
submission and accep-
tance, code reviewing,
bug triaging and also
on semistructured inter-
views of Github develop-
ers.

This paper [1] says “In our
sample, 33% of the pull
requests included modifica-
tions in test code, while
4% modified test code ex-
clusively. Of the pull re-
quests that included modi-
fications to test code, 83%
were merged, which is sim-
ilar to the average. This
seems to go against the find-
ings by Pham et al [53]”

291 carefully selected Ruby, Python,
Java and Scala projects (in total,
166,884 pull requests), and identify
we studied, using qualitative and
quantitative analysis, the factors that
affect pull request lifetime, merging
and rejection.

The study is based on data from the
Github collaborative development
forge, as made available through the
GHTorrent project. Using it, we first
explore the use of almost 2 million
pull requests across all projects in
Github.

This paper [53] that in the
course of the interviews,
several steps of the contri-
bution process on GitHub
emerged. After receiving
a pull request, the first
step that project owners
conducted was to manu-
ally review the contribu-
tion and assess it by dif-
ferent aspects. After this
review, they merged the
pull request into a test-
ing branch and resolved
conflicts manually. Su-
perficial adjustments like
code style corrections or
comments were added
based on preference

This paper [53] states that if
a test suite existed, project
owners ran it to check
whether or not this contri-
bution passed tests. This
increased confidence in the
contribution. Finally, the
contribution was merged into
the main branch of the
project. This means that if
the number of test increases
the pull request acceptance
rate increases.

The researched focused on un-
derstanding which testing-related
norms and conventions exist on
GitHub. For their investigation, they
obtained 16,000 email addresses of
recently active users by querying
the GitHub Archive3. From this
pool, 50 users were invited to semi-
structured interviews and another 50
users by randomly choosing a mem-
ber from each of the 50 most suc-
cessful GitHub teams as listed on the
Coderwall4 leaderboard. This sam-
pling strategy resulted in a diverse
population: highly experienced as
well as regular users of GitHub.

This paper investigates how test-
ing behavior is influenced by the
peculiarities of social coding sites
like GitHub. Different testing prac-
tices may influence software quality,
maintainability, and development
times. For example, in some cases
testdriven development (TDD) has
been shown to significantly lower
the defect rate of software prod-
ucts. If social coding sites can influ-
ence the testing behavior of develop-
ers, they might also have an impact
on the progress of software devel-
opment projects and their resulting
products. Understanding these in-
fluences better might enable individ-
ual developers and software devel-
opment organizations to positively
influence their own teams’ testing
practices.

This paper [17] states
that test inclusion was
measured by a dichoto-
mous variable indicating
whether or not the pull re-
quest included test cases.

This paper [17] says “The in-
clusion of test cases was posi-
tively associated with pull re-
quest acceptance, with accep-
tance likelihood increased
by 17.1% when tests are in-
cluded”

A dataset was created of pull re-
quests and the users and repositories
associated with each pull request
through sampling for active, collab-
orative projects on GitHub. The
dataset comprises information gath-
ered from the GitHub Application
Programmer Interface (API). In to-
tal, this includes 659,501 pull re-
quests across the 12,482 projects.
For this dataset, information was
gathered about each unique GitHub
user associated with the set of pull
requests. This set of user informa-
tion includes 95,270 unique GitHub
user accounts. The API was also
used to gather information on all is-
sues and comments for each reposi-
tory

This paper present a study on
open source software contribution
in GitHub that focuses on the task
of evaluating pull requests, which
are one of the primary methods for
contributing code in GitHub. The as-
sociation of various technical and
social measures is analyzed with
the likelihood of contribution accep-
tance.

Clic
k t

o BUY NOW!PD
F-XChange Editor

w
ww.pdf-xchange.com Clic

k t
o BUY NOW!PD

F-XChange Editor

w
ww.pdf-xchange.com

https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor


PAGE 45 - AUGUST 28, 2024

Annotations This paper [54] found
several undisciplined an-
notations in 110 open-
source C/C++ systems of
different domains, sizes,
and popularity GitHub
metrics. Then, manu-
ally refactored the code
to make the annotations
disciplined. We refac-
tor only one annotation
per project. Right away,
we submit a pull request
with the code changes.
Also comments and ques-
tions were submitted us-
ing GitHub to understand
the developers thoughts
about the pull requests

This paper [54] says “Refac-
toring 2 was applied just in
a few pull requests. When
considering the “Might ac-
cept” cases as accepts, Refac-
toring 4 and Refactoring 6
reach 74% and 64% of ac-
ceptance rate, respectively”,
which means that the accep-
tance rate increases for disci-
plined code annotations.

Contribution
quality

By asking 749 integrators
through an anonymized
survey.[8] This paper[45]
uses results from a sur-
vey to measure the con-
tribution quality. This
paper[46] used peer re-
views to measure the
quality. This paper[47]
used machine learning
techniques to classify the
factor and then they cal-
culated the accuracy mea-
sures.

The pull-request is more
likely to be accepted if non-
functional characteristics of
the code are understandable
and elegant.[8, 45, 46] How-
ever, there is also a study[47]
that concludes that the qual-
ity of the code submitted in
a pull request does not influ-
ence at all its acceptance.

This paper[8] used a large-scale
two-round survey of 749 integra-
tors, split into three logical sections:
demographic information, multiple
choice or Likert-scale questions,
open-ended questions.
This paper[45] used a survey among
developers to determine the quality.
This paper[46] used a survey among
students to qualitatively determine
the quality of code and used this data
to label the results. This paper[47]
used several machine learning tech-
niques and then measured its accu-
racy among the data.

"Integrators often relate contribu-
tion quality to the quality of the
source code it contains. To evalu-
ate source code quality, they mostly
examine non-functional characteris-
tics of the changes. Source code that
is understandable and elegant, has
good documentation and provides
clear added value to the project with
minimal impact is preferred. Apart
from source code, the integrators
use characteristics of the pull re-
quest as proxies to evaluate the qual-
ity of the submission. The qual-
ity (or even the existence) of the
pull request documentation signifies
an increased attention to detail by
the submitter.". As such it holds
that: "Top priorities for integrators
when evaluating con-tribution qual-
ity include conformance to project
style and architecture, source code
quality and test coverage. Integra-
tors use few quality evaluation tools
other than continuous integration."

Clic
k t

o BUY NOW!PD
F-XChange Editor

w
ww.pdf-xchange.com Clic

k t
o BUY NOW!PD

F-XChange Editor

w
ww.pdf-xchange.com

https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor


PAGE 46 - AUGUST 28, 2024

Functiona-
lity of the
code

This study[55] measured
the factor with a survey
where the answers were
quantitatively and quali-
tatively analyzed. a sur-
vey.

The paper[55] states that
given the contributor is a
quasi-contributor, and the
functionality of the code is
not needed/duplicate to other
PR’s, that the rejection rate
of the pull request increases.

After curating the selection of OSS
projects, they aimed to identify the
quasi-contributors. They consider
quasi-contributors those newcomers
to a project who submitted pull-
request(s), but had no “accepted con-
tribution” to that specific project.
They consider an accepted contribu-
tion any changes that passed the pull-
request cycle and, therefore, were
merged to the project code base.
First, they examined the distribu-
tions of the quasi-contributions and
quasi-contributors. In the second
analysis, they followed open coding
and axial coding procedures to qual-
itatively analyze open-ended ques-
tions from their surveys and pull-
requests discussions. In addition,
they quantitatively analyzed closed-
ended questions to understand devel-
opers’perceptions about nonaccep-
tance

"Recent studies suggest that well-
known OSS projects struggle to find
the needed workforce to continue
evolving—in part because external
developers fail to overcome their
first contribution barriers. In this
paper, we investigate how and why
quasi-contributors (external devel-
opers who did not succeed in get-
ting their contributions accepted to
an OSS project) fail. To achieve
the goal, we collected data from 21
popular, non-trivial GitHub projects,
identified quasicontributors, and an-
alyzed their pull-requests. In ad-
dition, we conducted surveys with
quasi-contributors, and projects’ in-
tegrators, to understand their per-
ceptions about nonacceptance. We
found 10,099 quasi-contributors —
about 70% of the total actual con-
tributors — that submitted 12,367
nonaccepted pull-requests."

Complexity
of the
project

This paper [56] com-
puted cyclomatic com-
plexity by, subjecting
each source code file to
a commercial software
code analysis tool. To
account for the effects
of size, the complexity
metric was normalized
by dividing it by the
number of lines of code
for each software project.
This procedure also re-
duces collinearity prob-
lems when size is in-
cluded in the regression
models [20]. The Change
in Cognitive Complex-
ity (ChgCC) was calcu-
lated by subtracting cy-
clomatic complexity mea-
sure of the first ver-
sion from the cyclomatic
complexity measure of
the second version, i.e.,
CC2nd˘CC1st

This papers says “In a com-
plex piece of code, it takes
longer for a developer to de-
termine the flow of logic re-
sulting in slower progress of
the project.” This means that
the if the complexity of the
code rises the pull request are
more likely to be open.

This paper examined OSS projects
hosted at SourceForge, which was
the primary hosting place for OSS
projects at the time,which houses
about 90% of all OSS projects. It
has been argued SourceForge is
the most representative of the OSS
movement, in part because of its
popularity and the large number of
developers and projects registered
[73, 74].

In this article, software complex-
ity and its impacts are examined in
the context of open source software
(OSS). Past efforts have been piece-
meal or based on limited informa-
tion. For example, comprehension
of the source code has been linked
with source code complexity

Clic
k t

o BUY NOW!PD
F-XChange Editor

w
ww.pdf-xchange.com Clic

k t
o BUY NOW!PD

F-XChange Editor

w
ww.pdf-xchange.com

https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor


PAGE 47 - AUGUST 28, 2024

Purpose
of pull
request

This paper [50] identi-
fied ten recent pull re-
quests interviewees had
received from contribu-
tors they had not directly
interacted with before.
These pull request inter-
actions varied in terms of
whether or not the project
owner looked at the pro-
file of the contributor, the
nature of the code being
submitted, the perceived
expertise of the contribu-
tor, the amount of discus-
sion surrounding the pull
request Larger changes
are introducing a new fea-
ture, or conflicting with
other existing functional-
ity.

The papers says that “Own-
ers were more certain about
the value of simple changes
that addressed features the
owner had wanted to add,
were small in scope, or fixed
a known bug. Owners were
less uncertain about the value
of code that was suggesting
a larger change, introducing
a new feature, or conflicting
with other existing function-
ality.”, This means that pur-
poses like fixing a bug and
add known features do in-
crease the acceptance of a
pull request.

This paper conducted interviews
with 18 GitHub users focusing in
detail on how they formed impres-
sions of new people they encoun-
tered on the site. Using information
obtained through the GitHub API,
GitHub users who owned at least
one open source project were identi-
fied. Potential interviewees who had
publicly-displayed e-mail addresses
available on their personal profiles
were contacted to see if they would
like to participate in the study.

The goal in this work was to develop
a more detailed understanding of im-
pression formation in online peer
production. The researchers build
on the distributed social cognition
model, which posits that impression
formation is an active process influ-
enced by behavior in a network or
group. This model shows that when
forming impressions of others, indi-
viduals engage in an active process
that involves the following steps: 1)
choosing whether to obtain infor-
mation about the target; 2) choos-
ing what information is elicited, and
3) interpreting the elicited informa-
tion to form a person model (an in-
tegrated interpretation of what a per-
son is like.) The distributed social
cognition model provides general
guidelines about how impression for-
mation occurs but doesn’t describe
what the process looks like in a spe-
cific setting.

Clic
k t

o BUY NOW!PD
F-XChange Editor

w
ww.pdf-xchange.com Clic

k t
o BUY NOW!PD

F-XChange Editor

w
ww.pdf-xchange.com

https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor


PAGE 48 - AUGUST 28, 2024

This paper [57] found
that 7,529 closed pull
requests in the data-set
(about 10 percent) had la-
bels associated with them.
We analyzed these labels
and classified the pull re-
quests as a bug fix, fea-
ture enhancement or doc-
umentation contribution
and observed the merge
ratio for each of these cat-
egories.

The papers says that “Core
developers seem relatively
open to accept bug fixes and
documentation changes from
the external community, but
may be apprehensive about
proposed feature enhance-
ments.”, This means that pur-
poses like fixing a bug and
adding documentation do in-
crease the acceptance of a
pull request and new features
do decrease the acceptance
rate of a pull request.

This paper used the data set which
contains, among other things, com-
mit history and pull requests of
89 top-starred GitHub projects writ-
ten in different languages and their
forks. Of the 108,629 forks in this
data-set, only 18,343 had at least
one commit, indicating that a ma-
jority of the forks are just stubs. The
root projects and forks combined ac-
count for a total of 548,299 commits
by 23,237 distinct users, which are
analyzed and classified, with respect
to each root project, as CORE, EX-
TERNAL or MUTANT

In this paper, a data set of 89 popular
projects hosted on GitHub and their
108,000+ forks is analyzed in order
to study the levels of participation
from different communities of the
root projects, which are labeled as
CORE, EXTERNAL or MUTANT.
Note that each of these categories
are defined on a per-project basis, so
a CORE-committer in one project
may be an EXTERNAL committer
in another project. The study is for-
mulated with the folowing research
questions RQ1: What is the distri-
bution of relative sizes of communi-
ties (CORE, EXTERNAL and MU-
TANT) in the root projects consid-
ering (1) number of users in each
community and (2) number of com-
mits contributed by each commu-
nity? RQ2: Is the distribution of
relative sizes of communities im-
pacted by the main programming or
scripting language used by the root
project? RQ3: Are the communities
that are contributing to these open-
source projects geographically di-
verse or concentrated? RQ4: What
is the nature of external contribution
(e.g. bug fix, feature enhancement or
documentation) and do the maintain-
ers of root projects have a preference
of either type in deciding whether or
not to incorporate such external con-
tribution or to reject it?

Clic
k t

o BUY NOW!PD
F-XChange Editor

w
ww.pdf-xchange.com Clic

k t
o BUY NOW!PD

F-XChange Editor

w
ww.pdf-xchange.com

https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor


PAGE 49 - AUGUST 28, 2024

Number
of modi-
fied files
(many
files)

This paper [48] found
fifty factors from the re-
lated works used in this
study include not only
the pull request or code
review on GitHub but
also code quality met-
rics. The relationship of
these factors are exam-
ined by using association
rules.[48]

This paper state that from
the rules that they created,
which present the transac-
tions probability that having
this pattern, C present the
confidence value of each rule,
L present the lift vale of each
rule, that Rule1 - Rule7 have
a confidence value equal to
one, which means that if
the patterns from Rule1 -
Rule7 occurred in pull re-
quests, the pull requests are
definitely rejected (100%).
Rule 8 - Rule10 have a con-
fidence value equal to 0.99,
which means that if the pat-
terns from Rule8 - Rule10
occurred in pull requests,
the pull requests are rejected
99[48]

The first dataset gives all labels val-
ues in "Yes" and "No" flags to iden-
tify the labels used in the pull re-
quest. If the flag is "Yes", the label
is used in the pull requests. If not, it
is not used in the pull request. Due
to the huge amounts of "No" flag in
the first dataset, some related labels
are merged in the second dataset.
The factors meanings are the related
labels merging keys. After merg-
ing the related labels, there are only
five label groups in the represen-
tative labels: community, specific
needs, new submitting transaction,
review type, and pull request type.
r.1) code chunk -> file changed r.2)
code chunk and blank line count ->
file changed r.3) changes count and
multi-line count -> code chunk r.4)
file changes count, muti-line count
and no community label -> blank
line count r.5) code chunk -> blank
line count r.6) file changes count,
code chunk -> blank line count r.7)
code chunk -> file changes count
r.8) file changes count, lines of code
changed count -> blank line count
r.9) file changes count -> blank line
count r.10) file changes count, no
community -> blank line count

The main contribution of this work
is to provide a method to find the im-
pact factors on the pull requests and
also the relationships among impact
factors.

Clic
k t

o BUY NOW!PD
F-XChange Editor

w
ww.pdf-xchange.com Clic

k t
o BUY NOW!PD

F-XChange Editor

w
ww.pdf-xchange.com

https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor


PAGE 50 - AUGUST 28, 2024

The data set used in
the experiment com-
prises of 61,592 pull
requests made on 72
different projects. The
attributes considered in
the analysis are: project
id (project identifier);
language (programming
language); developer
type (main team or exter-
nal); first pull (informs
if the pull request is
the first made by the
requester); commits pull
(amount of commits per
pull request); files added
(amount of files added);
file edited (amount
of files edited); files
removed (amount of
files removed); files
changed (amount of
files added, moved, and
edited); analysis time
(time required to analyze
the pull request); status
pull (pull request final
status). The value of the
last attribute determines
whether the pull request
is accepted (merged) or
rejected (closed).

This paper [31] says that
“Rule 3 (commits pull = 1
commit ∧ files added = no
file ∧ developer type = main
team ∧first pull = false) dis-
plays a conjunction of good
factors with positive influ-
ence over the acceptance of
a pull request. It is notewor-
thy that a request with a sole
commit, that does not add
new files, made by a mem-
ber of the main team which
had already made a pull re-
quest before, has the chance
of merge increased in 40%.”

This paper used an adoption of a
data mining technique, more specif-
ically, the extraction of association
rules, in order to identify new and
useful patterns from pull requests
data. Data mining techniques have
been employed in the extraction of
knowledge from software reposito-
ries [63, 64]. The exploratory anal-
ysis done through the ex-traction of
association rules focuses on the dis-
covery of intrinsic information from
data set.

The work of the researchers pro-
poses an exploratory study on pull
requests through data mining. More
specifically, they extract association
rules, aiming at discovering relation-
ship among features of pull requests
obtained from GitHub. In this sec-
tion, they detail the materials and
methods used in the experiment.

Clic
k t

o BUY NOW!PD
F-XChange Editor

w
ww.pdf-xchange.com Clic

k t
o BUY NOW!PD

F-XChange Editor

w
ww.pdf-xchange.com

https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor


PAGE 51 - AUGUST 28, 2024

To characterize patches
and build prediction
models, the researchers
did extract features from
patches and considered
three possible feature
sources: patch meta-data,
patch content, and
bug report information.
Patch meta-data: Patch
meta-data includes patch
information such as
patch writer, patch file
names, and the number
of patch files. Patch
content: The quality of
patch content plays a
major role in deciding
the review outcome. Cor-
rect, good, and simple
patches will be accepted.
However, extracting
patch quality as features
is a challenging task.
Bug report information:
The bug reports and
patches included in the
bug reports are closely
related. For example, if
a bug in a report is not
a real bug or a trivial
feature enhancement
request, then patches
of the bug may not be
interested either.

This paper [58] states if
the that the number of files
changed in creases the re-
jectance rate of a single path
decreases.

For this paper, the review pro-
cesses of two open-source projects
were observed, Firefox and Mozilla
Core. It is noticed that code re-
views are mostly organized manu-
ally. In particular, finding appropri-
ate reviewers is a complex and time-
consuming task and, surprisingly,
impacts the review outcome: review
requests without an initial reviewer
assignment have lower chances to
be accepted (and take longer).

This paper [27] states
the factor selection was
based on prior work in
the areas of patch sub-
mission and acceptance,
code reviewing, bug triag-
ing and also on semi-
structured interviews of
Github developers.

By looking at the results in
paper [27] we can conclude
that the number of modified
files and the acceptance rate
do have a weak positive cor-
relation with the requester
his pull request success rate,
which means that if the num-
ber of modified files of the
pull project increases the ac-
ceptance of the pull request
increases.

To understand what the underlying
principles that guide pullbased de-
velopment are, pullreqs was created
pullreqs, a curated dataset of almost
900 projects and 350,000 pull re-
quests, including some of the largest
users of pull requests on Github.

A previous version of the dataset
has been used to quantitatively study
the pull request development pro-
cess. The pullreqs dataset is based
on previous work on GHTorrent, al-
beit only for its construction. While
GHTorrent is a full mirror of all data
offered by the Github API, the pull-
reqs dataset includes many features
extracted by combining GHTorrent
and the project’s repository; the
dataset is offered in a format ready
to be processed by statistical soft-
ware. In this paper, the construction
process of the dataset and outline di-
rections for further research with it
is explained.

Clic
k t

o BUY NOW!PD
F-XChange Editor

w
ww.pdf-xchange.com Clic

k t
o BUY NOW!PD

F-XChange Editor

w
ww.pdf-xchange.com

https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor


PAGE 52 - AUGUST 28, 2024

This paper [17] states
that this factor was mea-
sured by looking at the
number of files changed
in the pull request

This paper [17] says “Lines
changed had a stronger ef-
fect but negative, with each
unit of lines changed de-
creasing the chance of accep-
tance by 26.2% compared to
7.3% with each unit of files
changed.” This means that is
the number of changed files
increases the acceptance rate
decreases.

A dataset was created of pull re-
quests and the users and repositories
associated with each pull request
through sampling for active, collab-
orative projects on GitHub. The
dataset comprises information gath-
ered from the GitHub Application
Programmer Interface (API). In to-
tal, this includes 659,501 pull re-
quests across the 12,482 projects.
For this dataset, information was
gathered about each unique GitHub
user associated with the set of pull
requests. This set of user informa-
tion includes 95,270 unique GitHub
user accounts. The API was also
used to gather information on all is-
sues and comments for each reposi-
tory

This paper present a study on
open source software contribution
in GitHub that focuses on the task
of evaluating pull requests, which
are one of the primary methods for
contributing code in GitHub. The as-
sociation of various technical and
social measures is analyzed with
the likelihood of contribution accep-
tance.

Number of
commits

This paper [49] found
the factor by extracted
3000 pull requests events
that were made in the
window from 04/01/2012
to 04/14/2012. After
data sanitization and fil-
tering, this resulted in
2734 usable data points.
Then they ran queries
on GitHub Archive using
Google BigQuery to get
information such as the
number of successful pull
requests and total num-
ber of pull requests made
for each contributor and
repository

This paper says “Multi-
ple commits imply a com-
plex change and reduces the
chance of acceptance” [49],
which means that an increase
in commits, leads to a de-
crease in acceptance rate.

The papers states that the primary
data source or this research was the
GitHub Archive, data that is avail-
able for querying via Google’s Big-
Query. After that Google BigQuery
was used to extract relevant data by
filtering data on related event types.
Once a resulting data has been gen-
erated using Google BigQuery, the
data was exported over to Google
Cloud Storage in Comma Separated
Values (CSV) format, some pre-
processing was done, and the date
was imported into Sqlite3 tables for
easy querying.

Because pull requests are made
from external, unlisted contributors,
there is an element of uncertainty
in whether a pull request will be
accepted. While there are certain
guidelines and factors that may ap-
proximately indicate a successful
pull request, the overall result is not
clear and deterministic. The goal
of this research is to use machine
learning techniques to glean insights
into what contributes to a successful
pull request. If the pull request pre-
diction accurately can be modelled,
men has the e ability to concretely
understand the mechanisms that mo-
tivate successful pull requests, and
use this to improve the collaborative
software engineering process

This paper [27] states
the factor selection was
based on prior work in
the areas of patch sub-
mission and acceptance,
code reviewing, bug triag-
ing and also on semi-
structured interviews of
Github developers.

By looking at the results in
paper [27] we can conclude
that the number of commits
and the acceptance rate do
have a weak positive cor-
relation with the requester
his pull request success rate,
which means that if the num-
ber of commits of the pull
project increases the accep-
tance of the pull request in-
creases.

To understand what the underlying
principles that guide pullbased de-
velopment are, pullreqs was created
pullreqs, a curated dataset of almost
900 projects and 350,000 pull re-
quests, including some of the largest
users of pull requests on Github.

A previous version of the dataset
has been used to quantitatively study
the pull request development pro-
cess. The pullreqs dataset is based
on the previous work on GHTor-
rent, albeit only for its construction.
While GHTorrent is a full mirror
of all data offered by the Github
API, the pullreqs dataset includes
many features extracted by com-
bining GHTorrent and the project’s
repository; the dataset is offered in a
format ready to be processed by sta-
tistical software. In this paper, the
construction process of the dataset
and outline directions for further re-
search with it is explained.

Clic
k t

o BUY NOW!PD
F-XChange Editor

w
ww.pdf-xchange.com Clic

k t
o BUY NOW!PD

F-XChange Editor

w
ww.pdf-xchange.com

https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor


PAGE 53 - AUGUST 28, 2024

The factor is measured
by looking at code contri-
butions of the developer
using the pull-request
acceptance rate. [26]
This paper [75] uses
the GHTorrent[5] and
datamining to look at the
factor.
This paper used man-
ual inspection and mea-
sured the amount of com-
mits versus the accep-
tance rate [76]

The paper states that an in-
crease in commits in the
pull request reduces the pull-
request acceptance rate [26]
The paper[75] states that the
acceptance rate went down
within previous studies and
papers with the size of the
pull request (number of com-
mits/files etc.). With this pa-
per, the addition gets added
that those factors also may
influence assignment of the
reviewers.
This paper [76] says that if
the size of the request is big,
it has less chance to be ac-
cepted.

Adoption of a data mining tech-
nique, more specifically, the extrac-
tion of association rules, in order
to identify new and useful patterns
from pull requests data. Data min-
ing techniques have been employed
in the extraction of knowledge from
software repositories [63, 64]. The
exploratory analysis done through
the ex-traction of association rules
focuses on the discovery of intrinsic
information from data set.
derive a comprehensive list of patch
rejection reasons from a manual in-
spection of 300 rejected Eclipse and
Mozilla patches, a large-scale on-
line survey of Eclipse and Mozilla
developers.[76]
In this work, we adopted a data
mining technique called association
rules extraction. Specifically, the
study employed the Knowledge Dis-
covery in Databases (KDD) process,
as follows: (1) data selection; (2)
pre-processing; (3) transformation
and data enrichment; (4) association
rules extraction; and (5) results inter-
pretation and evaluation. GHTorrent
was used for data selection. [26]

"In pull requests with several
commits (commits_pull =
manycommits), the chances of
rejection increase in 51%. Figure 2
shows the Lift values for association
rules of type commits_pull3 →
status_pulls = closed.Thus, we
can conclude that the greater the
number of commits performed in
a pull request, the higher is the
chance of rejection."
"Factors such as the number of com-
mits and files in the pull request
may influence the reviewer assign-
ment. For example, some reviewers
have preference for smaller pull re-
quests, with few commits and files,
with confidence ranging from 82%
to 100%."
reviewers reject a large patch not
solely because of its size, but mainly
because of the underlying reasons
that induce its large size, such as the
involvement of unnecessary changes

Clic
k t

o BUY NOW!PD
F-XChange Editor

w
ww.pdf-xchange.com Clic

k t
o BUY NOW!PD

F-XChange Editor

w
ww.pdf-xchange.com

https://www.pdf-xchange.com/product/pdf-xchange-editor
https://www.pdf-xchange.com/product/pdf-xchange-editor

	Introduction
	Aims
	Methodology
	Search Terms
	Time frame
	Sites

	Factor Selection
	Developer characteristics
	Project characteristics
	Process characteristics
	Code characteristics

	Developer
	Project
	Process
	Code
	Discussion
	Conclusion
	Table: factors influencing pull-request decision making



